• Title/Summary/Keyword: 부착 강도

Search Result 1,415, Processing Time 0.026 seconds

Bonding Characteristics of Basalt Fiber Sheet as Strengthening Material for Railway Concrete Structures (Basalt 섬유쉬트의 철도시설 콘크리트구조물 보강재로서의 부착거동 연구)

  • Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.641-648
    • /
    • 2009
  • Concrete structures become more common in railway systems with an advancement of high speed train technologies. As the service life of concrete structures increases, structural strengthening for concrete structures may be necessary. There are several typical strengthening techniques using steel plate and fiber reinforced polymer (FRP) materials, which have their own inherent shortcomings. In order to enhance greater durability and resistance to fire and other environmental attacks, basalt fiber material attracts engineer's attention due to its characteristics. This study investigates bonding performance of basalt fiber sheet as a structural strengthening material. Experimental variables include bond width, length and number of layer. From the bonding tests, there were three different types of bonding failure modes: debonding, rupture and rip-off. Among the variables, bond width indicated more significant effect on bonding characteristics. In addition the bond length did not contribute to bond strength in proportion to the bond length. Hence this study evaluated effective bond length and effective bond strength. The effective bond strength was compared to those suggested by other researches which used different types of FRP strengthening materials such as carbon FRP.

Finger Mounted Pneumatic Tactile Display and Psychophysical Experiments (손끝 부착 형 공기촉감 제시장치의 개발 및 심리 물리학적 실험)

  • Kim, Yeong-Mi;Oakley, Ian;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.467-473
    • /
    • 2006
  • 가상환경 또는 실제환경에서 정보를 제공하는 햅틱 인터페이스의 필요성이 점점 증가 함에 따라 촉감을 제공 하기 위한 다양한 햅틱 장치가 개발되었고 각 장치의 특성과 성능 평가를 위해 기초적인 정신(심리) 물리학적 연구가 수행 되고 있다. 본 논문에서는 여러 가지 햅틱 인터페이스 중 손가락 끝에 부착하는 형태의 새로운 공기 촉감 제시장치(PTI: Pneumatic Tactile Interface)를 제시하고 이 장치의 유용성을 입증하기 위해 localization rate, 시간 분해능, 길이 분해능, 강도의 세기 등의 심리 물리학적 실험(Psychophysical Experiment) 수행 결과를 제시한다. 공기촉감 시스템은 50개의 출력까지 확장 가능한 공기촉감 하드웨어로 구성 되어있고 손가락 끝에 부착하는 형태로 구성 하기 위해 5*5의 배열의 디스플레이를 제작하였다. 16명의 피실험자가 A, B 두 그룹으로 나뉘어 각각 2가지의 심리물리학 실험을 수행하였다. localization rate의 경우 9개의 다른 자극의 위치를 구별하기 위해 3*3 배열로 구성된 밀집된 디스플레이와 확장된 디스플레이로 측정을 수행하여 각각 58.13%, 85.9%의 localization rate를 얻을 수 있었다. 그리고 100번의 반복 실험을 통해 약 2.6mm의 길이 분해능을 얻을 수 있었고 자극 강도 실험의 경우, 실제의 강도가 세짐에 따라 피 실험 자들이 느끼는 강도의 척도도 증가 하며, 강도가 약해 질수록 피 실험 자들이 느끼는 강도 역시 거의 선형적으로 감소함을 알 수 있었다. 그러나 시간 분해능의 경우에는 시스템을 구성하는 밸브의 성능으로 인해 20ms 이하의 시간 분해능 측정은 제한 되었다. 이러한 심리 물리학 실험을 통하여 개발된 공기촉감 제시장치가 다양한 정보를 전달하는데 충분하다는 결론을 내릴 수 있으며, 제안된 시스템을 사용하는 여러 가지 어플리케이션을 제시하였다.

  • PDF

Tension Lap Splice Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구)

  • Lee, Gi-Yeol;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.753-761
    • /
    • 2009
  • This paper presents the test results of total 24 beam-end specimens to investigate the effect of high-strength concrete and cover thickness on the development resistance capacity in tensile lap splice length regions. Based on bond characteristics that an increase in concrete strength results in higher bond stress and shortening of the transfer length, cracking behavior that thin cover thickness induced a splitting crack easily and brittle crack propagation, current design code that development length provisions as uniform bond stress assumption was investigated apply as it. The results showed that as higher strength concrete was employed, not only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of $\sqrt{f_{ck}}$ but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Change of shear bond strength of orthodontic brackets according to surface treatment on dental gold alloy (치과용 금합금의 표면처리에 따른 교정용 브라켓의 전단결합강도 변화)

  • Min, Ji-Hyun;Hwang, Hyeon-Shik;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.483-490
    • /
    • 2000
  • The dental gold alloy shows a lower bond strength than the natural teeth in bracket bonding, and this can be a possible source of subsequent bond failure. This study aims to evaluate the effect of various gold alloy surface treatment techniques on shear bond strength between the orthodontic adhesives and the gold alloy and to find ways of increasing the bond strength. Two hundred and forty specimens made of the dental fold alloy were divided into twelve groups based on the combination of surface treatment methods(non-surface treatment, sandblasted, sandblasted plus tin-plated, and sandblasted plus intermediate adhesive) and adhesive systems (Ortho-one, Panavia 21, Superbond C&B). The specimens with bonded brackets were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength was measured by a universal testing machine. The results were as follows: 1. All surface-treated groups showed a significantly higher shear bond strength than non-surface-treated groups. 2. The sandblasted plus tin-plated group showed a significantly higher shear bond strength than the sandblasted group only when Panavia 21 was involved. 3. The sandblasted plus intermediate adhesive group showed a significantly higher shear bond strength than sandblasted group regardless of the type of adhesive used. 4. Of the three resin adhesive types, the Superbond C&B showed the highest bond strength, followed by Panavia 21 and Ortho-one. These findings suggest that a combination of sandblasting and intermediate resin treatment is desirable in order to enhance bracket bond strength regardless of adhesive types.

  • PDF

Assessment of Biological Water Quality Using Epilithic Diatoms in the Upper Region of Nakdong River (낙동강 상류 수계에서 부착돌말류를 이용한 생물학적 수질 평가)

  • Choi, Jaesin;Chae, Hyunsik;Kim, Han-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.169-182
    • /
    • 2019
  • This study assessed biological water quality using epilithic diatoms in the Yeong river, Naeseong stream and Wi stream in the upper region of the Nakdong river from May to October 2016. Epilithic diatoms were not mobile, so they could reflect long-term water quality. The sampled epilithic diatoms were identified a total 158 taxa which were composed to 2 orders, 3 suborders, 8 families, 34 genera, 143 species and 15 varieties. Dominant species were Achnanthes convergens and Achnanthes minutissima at Yeong river, Nitzschia inconspicua at Naeseong stream, and Achnanthes minutissima, Cocconeis placentula var. lineata and Navicula minima at Wi stream. As a result of the CCA, Electrical conductivity, total nitrogen and total phosphorus were important factors determining the diatom species composition in the upper region of the Nakdong river. The correlation between diatom indices (DAIpo & TDI) measured to be high in the correlation coefficient (0.87) from the result of correlation analysis. In the result of the assessment of biological water quality using DAIpo and TDI, Yeong river was rated as class A at most sites. Naeseong stream was rated as class C to D at all sites except for N1 which was rated as Class A. Wi stream was rated as class B to C for DAIpo of W1, and TDI was rated as class D. The assessment of biological water quality at this site showed inferior TDI result compared to that of DAIpo. DAIpo and TDI of W2 were rated as class A to D, and the water quality has changed a lot. W3 and W4 were mostly rated as class B and C respectively.

RC조 보수에 사용되는 폴리머시멘트 몰탈의 철근 부착특성 평가

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.247-249
    • /
    • 2013
  • 열화한 철근콘크리트 구조물에 대하여 성능회복을 위하여 전기화학적 방식, 단면복구공법, 균열보수공법, 표면마감공법 등이 상용되고 있다. 본 연구에서는 단면복구공법의 적용과 성능예측을 위한 해석 모델의 입력값으로 사용될 보강철근과 단면복구재의 부착특성을 평가하기 위하여 철근인발실험을 실시하였다. 폴리머시멘트몰탈이 사용되었으며 부착요소의 강성과 강도를 구하여 비선형 해석을 실시하여 상당한 정확도의 예측값을 도출하였다.

  • PDF

Combined Effects of Sustained Load and Temperature on Pull-off Strength and Creep Response between CFRP Sheet and Concrete Using Digital Image Processing (디지털 이미지 분석을 통한 지속 하중과 온도의 복합 환경이 CFRP 쉬트와 콘크리트의 부착강도 및 크리프 거동에 미치는 영향 분석)

  • Jeong, Yo-Seok;Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • This paper aims at examining the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) sheets bonded to concrete as well as the pull-off strength of single-lap shear specimens after the sustained loading period using digital images. Elevated temperature during the sustained loading period resulted in increased slip of the CFRP composites, whereas increased curing time of the polymer resin prior to the sustained loading period resulted in reduced slip. Pull-off tests conducted after sustained loading period showed that the presence of sustained load resulted in increased pull-off strength and interfacial fracture energy. This beneficial effect decreased with increased creep duration. Based on analysis of digital images, results on strain distributions and fracture surfaces indicated that stress relaxation of the epoxy occurred in the 30 mm closest to the loaded end of the CFRP composites during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading duration, the failure mode of concrete-CFRP bond region can change from a cohesive failure in the concrete to an interfacial failure along the concrete/epoxy interface, which diminished part of the strength increase due to the stress relaxation of the adhesive.

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.

A fundamental study on the field applicability of the improved shape steel fiber shotcrete (형상을 개선한 강섬유보강 숏크리트의 현장 적용성에 관한 기초적 연구)

  • Kim, Sang-Hwan;Heo, Chung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • This paper presents the fundamental study on the field applicability of new-type steel fiber improved the existing shape. In this study, the theoretical reviews and the laboratory test programs were carried out to evaluate the mechanical characteristic of the new-type of steel fiber. The steel fiber sticking coefficient of new-type steel fiber was estimated from the test results. The laboratory scaled shotcrete rebound tests were also performed to analysis the field applicability of New-type steel fiber shotcrete and the mechanical behaviour of New-type steel fiber shotcrete were compared with that of the existing steel fiber shotcrete. It was found that the strength characteristic of New-type steel fiber shotcrete was increased.