DOI QR코드

DOI QR Code

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member

FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구

  • 최소영 (강릉원주대학교 방재연구소) ;
  • 최명성 (단국대학교, 토목환경공학과) ;
  • 김일순 (강릉원주대학교 방재연구소) ;
  • 양은익 (강릉원주대학교, 토목공학과)
  • Received : 2021.09.02
  • Accepted : 2021.10.15
  • Published : 2021.10.30

Abstract

FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.

FRP 보강근은 철근-콘크리트 부재의 부식 문제를 해결하기 위해 제안되어왔으나, FRP는 높은 인장강도, 낮은 연성 및 선형 탄성 거동으로 인해 하중이 전달될 때 콘크리트와 보강재 사이의 부착 메커니즘이 다르다. 그러므로, FRP-Rebar와 콘크리트 사이의 부착 거동은 주의 깊게 검토해야 한다. 이를 위해 직접 인발 실험이 간단하게 부착 거동을 평가할 수 있으므로 사용됐으나, 직접인발의 실험 결과는 실제 FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동과 다르다. 그러므로 실제 휨-부착 거동을 평가할 방안이 필요하다. 본 연구에서는 FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동에 대한 평가방법을 검토하고 비교하였다. 그 결과, 겹침이음이 있는 부재의 실험 방법이 실제 휨-부착 특성을 잘 반영할 수 있으나 다른 실험방법보다 시험체의 단면 및 지간이 커야 하고 시험체의 설계 및 해석이 복잡하다. 한편, 아치가 있는 부재 실험은 모멘트 팔길이의 변화를 무시하는 평형 방정식을 기반으로 한 힌지가 있는 부재 실험과 달리 콘크리트의 영향을 반영할 수 있으나, 휨-부착에 의한 파괴 이전에 전단파괴의 우려가 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 21CFRP-C163392-01).

References

  1. Yoon, Y. S., Kim, T. H., and Kwon, J. S. (2020), Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 24(3), 47-56. https://doi.org/10.11112/JKSMI.2020.24.3.47
  2. Oh, K. S., Park, K. T., Kwon, J. S. (2016), Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 20(4), 51-58. https://doi.org/10.11112/JKSMI.2016.20.4.051
  3. Hwang, C. S., Park, J. S., Park, K. T., and Kwon, J. S. (2017), Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 21(1), 9-14.
  4. Nanni, A., Micelli, F., and La-Tegola, A. (2001), Durability of GFRP Bars Subjected to Aggressive Environment, Proceeding of 22nd International SAMPLE Europe Conference, Paris, 431-443.
  5. Alkhrdaji, T., Nanni, A., Chen, G., and Barker, M. (1999), Upgrading the transportation Infrastructure: Solid RC Decks Strengthened with FRP, Concrete International, 21(10), 37-41.
  6. Nanni, A., Nenninger, J., Ash, K., and Liu, J. (1997), Experimental Bond Behavior of Hybrid Rods for Concrete Reinforcement, Structural Engineering and Mechanics, ACI, 5(4), 339-354. https://doi.org/10.12989/sem.1997.5.4.339
  7. ACI Committee 440 (2006), Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-06), American Concrete Institute, Michigan.
  8. CSA Group (2002), Design and Construction of Building Components with Fibre-Reinforced Polymers (CAN/CSA S806-02), Canadian Standard Association, Canada, 2002
  9. JSCE Research Subcommittee on continuous Fiber Reinforcing Materials (1997), Recommendations for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Japan Society of Civil Engineers, 1997.
  10. KCI Committee 112 (2019), FRP reinforcement structural design guidelines (KCI PM112.1-19), Korea Concrete Institute, Seoul.
  11. Choi, D. U., Chun, S. C., and Ha, S.S. (2009), Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members, Journal of the Korea Concrete Institute, KCI, 21(1), 65-74. https://doi.org/10.4334/JKCI.2009.21.1.065
  12. Orangun, C. O., Jirsa, J. O., and Breen, J. E. (1977), A Reevaluation of Test Data on Development Length and Splices, Journal Proceedings, ACI, 74(3), 114-122.
  13. Chun, S. C., and Choi, D. U. (2010), Development and Splice Lengths of FRP Bars with Splitting Failures, Journal of the Korea Concrete Institute, KCI, 22(4), 519-525. https://doi.org/10.4334/JKCI.2010.22.4.519
  14. ACI Committee 318 (2008), Building Code Requirements for Structural Concrete and Commentary (ACI 318M-08), American Concrete Institute, Michigan, 465.
  15. ACI Committee 408 (2003), Bond and development of straight reinforcing bars intension (ACI 408R-03), American Concrete Institute, Michigan, 6-9.
  16. Choi, Y.C., Park, K.S., Choi, C.S., and Choi, H.K. (2011), Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite), Journal of the Korea Concrete Institute, KCI, 23(6), 809-815. https://doi.org/10.4334/JKCI.2011.23.6.809
  17. Jung, W. T., Park, Y. H., and Park, J. S. (2011), An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type, Journal of the Korean Society of Civil Engineers, KSCE, 31(4A), 279-286. https://doi.org/10.12652/KSCE.2011.31.4A.279
  18. Tang, C.W., and Chen, C. K. (2020), Modeling Local Bond Stress-Slip Relationships of Reinforcing Bars Embedded in Concrete with Different Strengths, Materials, 13(17), 3701. https://doi.org/10.3390/ma13173701
  19. Lutz, L. A., and Gergely, P. (1967), Mechanics of Bond and Slip of Deformed Reinforcement, ACI Journal Proceedings 64(11), 711-721.
  20. Lee, J. Y. (2011), Reinforced Concrete Structures, DongHwa Technology Publishing Co., Paju, 332-335.
  21. Oh, H. S, Kang, T. S., and Oh, K.C. (2014), A Flexural Bonding Characteristic of GFRP Rebar Embedded in Concrete Beam Under Cyclic Loading, Journal of the Korean Society of Hazard Mitigation, KOSHAM, 14(4), 51-57. https://doi.org/10.9798/KOSHAM.2014.14.4.51
  22. ASTM (2015), Standard Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens (A944-15R), ASTM International, PA.
  23. RILEM (1973), Bond Test for Reinforcing Steel: 1-beam test (7-II-28D), Tentative Recommendations, RILEM Journal Materials and Structures, 6(32), 96-105.
  24. British Standards Institution (BSI) (2005), Steel for the Reinforcement of Concrete-Weldable Reinforcing Steel-Bar, Coil and Decoiled Product-Specification (BS 4449), British Standards Institution, London, 16-22.
  25. British Standards Institution (BSI) (2000), Determination of the bond behaviour between reinforcing steel and autoclaved aerated concrete by the beam test - Part 1: Short term test (BS EN 12269-1), British Standards Institution, London, 1-9.
  26. ACI Committee 440 (2007), Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (ACI 440R-07), American Concrete Institute, Michigan, 19-21.
  27. Rteil, A., Soudki, K. and Topper, T. (2011), Mechanics of bond under repeated loading, Construction and Building Materials. 25 (6), 2822-2827. https://doi.org/10.1016/j.conbuildmat.2010.12.053
  28. Noel, M. and Parvizi, M. (2020), Bond-Stress Distribution of GFRP-Reinforced Concrete Beams Containing Seawater, Journal of Composites for Construction, ASCE, 24(4), 04020035. https://doi.org/10.1061/(asce)cc.1943-5614.0001047
  29. Mazin M. Sarhan, Muhammad N.S. Hadi, and Lip H. Teh (2018), Bond behaviour of steel plate reinforced concrete beams, Construction and Building Materials, 189, 751-756 https://doi.org/10.1016/j.conbuildmat.2018.09.024
  30. Hamad, B.S., Ali, A.Y.H. and Harajli, M.H. (2005), Effect of fiber-reinforced polymer confinement on bond strength of reinforcement in beam anchorage specimens, Journal of Composites for Construction, ASCE, 9(1), 44-51. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(44)
  31. Choi, D. U., Chun, S. C., and Ha, S.S.(2012), Bond strength of glass fibre-reinforced polymer bars in unconfined concrete, Engineering Structures, 34, 303-313. https://doi.org/10.1016/j.engstruct.2011.08.033
  32. Darwin, D., and Graham, E. K. (1993), Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars, ACI Structural Journal, 90(6), 646-657.
  33. Chun, S. C., Choi, D. U., Ha, S.S., and Oh, B. H.(2008), Prying Action of Spliced Reinforcements in Tension, Proceedings of the Korea Concrete Institute Conference, 20(1), KCI, 1085-1088.
  34. Okelo, R. (2007), Realistic Bond Strength of FRP Rebars in NSC from Beam Specimens, Journal of Aerospace Engineering, ASCE, 20(3), 133-140. https://doi.org/10.1061/(ASCE)0893-1321(2007)20:3(133)
  35. Okelo, R., and Yuan, R. L. (2005), Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete, Journal of Composites for Construction, ASCE, 9(3), 203-213. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203)
  36. Oh, H. S, Sim, J. S., Kang, T. S., and Kwon, H. W. (2011), An Experimental Study on the Flexural Bonding Characteristic of a Concrete Beam Reinforced with a GFRP Rebar, KSCE Journal of Civil Engineering, KSCE, 15(7), 1245-1251. https://doi.org/10.1007/s12205-011-1018-y
  37. Harajli1, M., and Abouniaj, M. (2010), Bond Performance of GFRP Bars in Tension: Experimental Evaluation and Assessment of ACI 440 Guidelines, Journal of Composites for Construction, ASCE, 14(6), 659-668. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000139