• Title/Summary/Keyword: 부착강성

Search Result 222, Processing Time 0.026 seconds

A Study on the Correlation between the Prestress Force and the Effective Rigidity of the Bonded Tendon (부착식 텐던의 긴장력과 유효 강성의 상관성 연구)

  • Jang, Jung-Bum;Lee, Hong-Pyo;Hwang, Kyeong-Min;Song, Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.641-644
    • /
    • 2010
  • 프리스트레싱 시스템이 도입된 구조물의 사용수명이 오래됨에 따라, 이들 구조물의 잔존수명 평가와 보수 및 보강 등의 유지관리 차원에서 프리스트레싱 시스템의 현재 긴장력에 대한 평가는 매우 중요한 현안이 되어왔다. 따라서, 본 논문에서는 프리스트레싱 시스템의 현재 긴장력을 평가하기 위한 첫 단계로서 프리스트레싱 시스템의 긴장력이 구조계의 강성에 미치는 영향을 평가하였다. 이를 위하여 부착식 텐던 형식의 프리스트레싱 시스템이 도입된 시험체를 대상으로 SIMO sine sweep test를 수행하고 긴장력과 시험체의 유효 강성에 대한 상관성을 규명하였다. 그 결과, 프리스트레싱 시스템의 긴장력은 시험체의 유효강성을 증가시키며, 저차 고유진동수가 긴장력과 높은 상관성을 지니는 것으로 나타났다.

  • PDF

Experimental Study on the Machenical Properties of Composite Beam Composed End Reinforced Concrete and Center Steel (RC-S 복합보의 역학적 특성에 관한 실험적 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.675-682
    • /
    • 2002
  • The beam of composite structure composed of the RC structure in the end part and steel structure in the central palt were investigated during cyclic loading, in order to evaluate strength, stiffness, and deformational capacity. The parameters used in this study include the amount of reinforced steel bar between the steel beam and RC structure and the existence of the sticking plate. Test results showed that all specimens had stabilized hysteresis loops. Likewise, the specimens with sticking plate had higher load-carrying capacity compared with the one without it. In addition, the stiffness of the composite structure was higher than the steel structure. All specimens also showed good rotational capacity.

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

RC조 보수에 사용되는 폴리머시멘트 몰탈의 철근 부착특성 평가

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.247-249
    • /
    • 2013
  • 열화한 철근콘크리트 구조물에 대하여 성능회복을 위하여 전기화학적 방식, 단면복구공법, 균열보수공법, 표면마감공법 등이 상용되고 있다. 본 연구에서는 단면복구공법의 적용과 성능예측을 위한 해석 모델의 입력값으로 사용될 보강철근과 단면복구재의 부착특성을 평가하기 위하여 철근인발실험을 실시하였다. 폴리머시멘트몰탈이 사용되었으며 부착요소의 강성과 강도를 구하여 비선형 해석을 실시하여 상당한 정확도의 예측값을 도출하였다.

  • PDF

The Bond Performance of RC Beams Strengrhened for FRP Pannel deal with Fatigue Loadings through Experiments (실험에 의한 피로하중을 받는 FRP패널 보강 RC보의 부착성능)

  • Lee, Chang Gyu;Chung, Yung Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.105-115
    • /
    • 2007
  • Repair and Reinforcement are subjected change to increasing of remodelling. The usage of carbon fiber sheets is increasing for the strengthening of reinforce concrete structures. Therefore experimental and analytical studies are carry out to investigate the flexural behaviors of the strengthened RC structures by the external bonding of the new reinforcement method. Also the aim of this study is to investigate reinforcing method of FRP panel deal with fatigue loading through experiments.

A FEM analysis on the Bond Properties of High Strength Concrete (고강도콘크리트의 부착특성에 관한 유한요소해석)

  • 홍건호
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.175-183
    • /
    • 1998
  • 고강도콘크리트의 역학적 특성은 그 압축강도의 증가 이외에도 여러 가지 변화를 갖게 된다. 본 연구에서는 이와 같은 여러 특성의 변화 중 철근과의 부착특성에 관한 해석적 접근을 통하여 고강도콘크리트부재의 부착설계를 위한 이론적인 접근을 시도하였다. 해석의 변수로는 콘크리트의 압축강도, 부착길이 및 피복두께 등 3가지의 변수를 선정하였으며, 해석의 목적은 본 연구에 앞서 실시된 실험의 결과를 예측할 수 있는 단순화된 모델을 개발하고 이를 이용하여 부착실험의 결과를 해석적으로 분석하도록 하였다. 이에 따라 사용된모델은 실험에서 사용한 보단부형 부착시험체의철근과 콘크리트 부착부분의 기하학적 형상을 비교적 실제와 유사하게 모델링시킨 2차원의 평면모델을 사용하였다. 본 연구의 주요결과를 살펴보면 고강도콘크리트의 부착강도는 콘크리트의 피복두께에는 선형으로 비례하게 되나 부착길에는 비례하지 않는 것으로 나타났다. 이와 같은 결고는 기존의 실험결과와도일치하고있으며, 그 원인은 콘크리트의 강성증가에 따라 하중단측에 응력이 집중됨으로써 보통강도콘크리트의 경우와 같이 응력의 균등한 배분을 기대할 수 없기 때문으로 나타났다.

Failure and Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 파괴거동 및 휨 거동 특성)

  • Lim, Dong Hwan;Park, Sung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.289-295
    • /
    • 2008
  • The purpose of this study was to examine the flexural behavior of reinforced concrete beams strengthened with CFRP strips. A total of 12 rectangular beams were tested. Test variables in this study were the shapes, bonded length and the number of longitudinal layers of CFRP strips. From the experimental study, flexural capacity of the beams strengthened with CFRP strips significantly increased compared to the reinforced concrete beam without a CFRP strip. Maximum increase of ultimate strength was found about 120% more than the control beam. In this test, most of the strengthened beams failed suddenly due to the debonding of CFRP strips. It is also observed that the debonding of the strip was initiated in the flexural zone of the beam and propagated rapidly to the end of the beam. The ultimate tensile strains of CFRP strips in this test were occurred at the level of 36% of rupture tensile strength of the CFRP strip, and an analytical approach to compute the flexural strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted.

Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method (적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kim Jin-Kook;Kwak Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.1-13
    • /
    • 2006
  • An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Soon-Kyu;Kim, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2010
  • This is a preliminary study on the development of precast beam-column joints for dry construction methodology. Precast beam column joints with thru-connectors (BCJ_TC) using high strength bars or PS strands were developed and their seismic performance including strength degradation, stiffness degradation and energy dissipation capacity was experimentally evaluated. Test results showed that compressive failures at the end blocks of PC beam members occurred dominantly while PC columns including panel zones were free from any damage. However, the connections confined with CFRP at the end block showed much improved seismic performance than that of the unconfined connections. Connections with neoprene pad fillers between beam and column interfaces were better than the other connections in all the seismic performances except initial stiffness. To improve the seismic performances of BCJ_TC, compressive strength of the concrete at the end block need to be increased to compensate for the additional compressive stresses due to unbonded connectors and deformation of connectors should be controlled respectively.