• Title/Summary/Keyword: 부재 변위

Search Result 449, Processing Time 0.027 seconds

Optimum Design and Structural Application of the Bracing Damper System by Utilizing Friction Energy Dissipation and Self-Centering Capability (마찰 에너지 소산과 자동 복원력을 활용한 가새 댐퍼 시스템의 최적 설계와 구조적 활용)

  • Hu, Jong Wan;Park, Ji-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.377-387
    • /
    • 2014
  • This study mainly treats a new type of the bracing friction damper system, which is able to minimize structural damage under earthquake loads. The slotted bolt holes are placed on the shear faying surfaces with an intention to dissipate considerable amount of friction energy. The superelastic shape memory alloy (SMA) wire strands are installed crossly between two plates for the purpose of enhancing recentering force that are able to reduce permanent deformation occurring at the friction damper system. The smart recentering friction damper system proposed in this study can be expected to reduce repair cost as compared to the conventional damper system because the proposed system mitigates the inter-story drift of the entire frame structure. The response mechanism of the proposed damper system is firstly investigated in this study, and then numerical analyses are performed on the component spring models calibrated to the experimental results. Based on the numerical analysis results, the seismic performance of the recentering friction damper system with respect to recentering capability and energy dissipation are investigated before suggesting optimal design methodology. Finally, nonlinear dynamic analyses are conducted by using the frame models designed with the proposed damper systems so as to verify superior performance to the existing damper systems.

Studies on Behavior Characteristics of Retrofitted Cut-and-Cover Underground Station Using Centrifuge Test Results (원심모형실험을 이용한 내진 보강된 개착식 지하역사의 거동특성 연구)

  • Kim, Jin-Ho;Yi, Na-Hyun;Lee, Hoo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2017
  • Domestic urban railway underground station structures, which were built in the 1970s ad 1980s, had been constructed as Cut-and-Cover construction system without seismic design. Because the trends of earthquake occurrence is constantly increasing all over the world as well as the Korean Peninsula, massive human casualties and severe properties and structures damage might be occurred in an non-retrofitted underground station during an earthquake above a certain scale. Therefore, to evaluate the retrofit effect and soil-structure interaction of seismic retrofitted underground station, a centrifugal shaking table test with enhanced stiffness on its structural main member are carried out on 1/60 scaled model using the Kobe and Northridge earthquakes. The seismic retrofitted members, which are columns, side walls, and slabs, are evaluated to comparing with existing non-retrofitted centrifuge test results Also, to simulate the scaled ground using variation of shear velocity according to site conditions such as ground depth and density, resonant column test is performed. From the test results, the relative displacement behavior between ground and structures shows comparatively similar in ground, but is increased on ground surface. The seismic retrofit effects were measured using relative displacements and moment behavior of column and side walls rather than slabs. Additionally, earthquake wave can be used to main design factor due to large structural deformation on Kobe earthquake wave than Norhridge earthquake wave.

Pseudo Dynamic Test Study on Seismic Performance Evaluation of RC Columns Retrofitted by PolyUrea (내진보강용 폴리우레아로 보강된 철근콘크리트 기둥의 내진성능 평가에 대한 유사동적실험 연구)

  • Cho, Chul Min;Lee, Doo Sung;Kim, Tae Kyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.289-301
    • /
    • 2017
  • As earthquakes have frequently happened all over the world, huge losses of human life and property have occurred. Therefore, retrofitting and strengthen technologies of non-seismically designed structures in Korea are urgent. Also, there has been a growing interest about seismic retrofitting, where researches on the topic have been actively pursued in Korea. The study results showed that ductility inducing retrofitting method is more superior stiffness inducing method. In Japan, Super Reinforcement with Flexibility (SRF) was introduced. Therefore, in this study, seismic performance evaluation was performed through pseudo dynamic test and uniaxial compression test for RC column retrofitted by PolyUrea for ductility inducing retrofitting material. Uniaxial compression test results showed that strength of all specimens retrofitted by PolyUrea was higher than that of RC specimens. Also, all specimens retrofitted by PolyUrea also showed ductile fracture behavior. In pseudo dynamic test, by appling real earthquake record, the seismic behavior of RC column reinforced by PolyUrea was evaluated through relative displacement, reinforcement strain, displacement ductility, and dissipation energy. The results showed that PolyUrea helped to enhance seismic performance of RC columns.

The Pullout Behavior of a Large-diameter Batter ]Reaction Piles During Static Pile Load Test for a Large Diameter Socketed Pipe Pile (대구경 말뚝의 정재하시험시 대구경 경사반력말뚝의 인발거동)

  • 김상옥;성인출;박성철;정창규;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.5-16
    • /
    • 2002
  • The pullout behavior of large-diameter steel pipe piles(diameter = 2,500mm, length = 38~40m), which were designed as compression piles but used as reaction piles during a static compression load test on a pile(diameter = 1,000m, length = 40m), was investigated. The steel pipe piles were driven by 20m into a marine deposit and weathered soil layer and then socketed by 10m into underlying weathered and soft rock layers. The sockets and pipe were filled with reinforced concrete. The steel pipe and concrete in the steel pipe zone and concrete and rebars in the socketed zone were fully instrumented to measure strains in each zone. The pullout deformations of the reaction pile heads were measured by LVDTs. Over the course of the study, a maximum uplift deformation of 7mm was measured in the heads of reaction piles when loaded to 10MN, and 1mm of residual uplift deflection was measured. In the reaction piles, about 83% and about 12% of the applied pullout loads were transferred in the weathered rock layer and in the soft rock layer, respectively. Also, at an uplift force of 10MN, shear stresses due to the uplift in the weathered rock layer md soft rock layer were developed as much as 125.3kPa and 61.8kPa, respectively. Thus, the weathered rock layer should be utilized as resisting layer in which frictional farce could be mobilized greatly.

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines (하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발)

  • Kim, Hyun Gi;Kim, Bum Jun;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

A Study on the Ubiquitous Wireless Tilt Sensors's Application for Measuring Vertical Deflection of Bridge (교량의 수직처짐 측정을 위한 유비쿼터스 무선경사센서 활용연구)

  • Jo, Byung Wan;Yoon, Kwang Won;Kim, Young Ji;Lee, Dong Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.116-124
    • /
    • 2011
  • In this study, a new method to estimate the bridge deflection is developed by using Wireless Tilt Sensor. Most of evaluations of structural integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structure, especially bridges. In the past, Because of the lack of appropriate methods to measure the deflection curve of bridges on site, the measurement of deflection had been done restrictly within just a few discrete points along the bridge. Also the measurement point could be limited to locations installed with displacement transducers. So, in this study, the deflection of the structure was measured by wireless tilt sensor instead of LVDT(Linear Variable Differential Transformer). Angle change of tilt sensor shows structural behavior by the change of the resistor values which is presented to voltage. Moreover, the maximum deflection was calculated by changing the deflection angle which was calculated as V(measured voltage) ${\times}$F(factor) to deflection. The experimental tests were carried out to verify the developed deflection estimation techniques. Because the base of tilt measuring is the gravity, uniform measurement is possible independent of a measuring point. Also, measuring values were showed very high accuracy.

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

Scaling Method of Earthquake Records for the Seismic Analysis of Tall Buildings (초고층 구조물의 지진해석을 위한 지진기록의 조정방법)

  • Kim, Tae-Ho;Park, Ji-Hyeong;Kim, Ook-Jong;Lee, Do-Bum;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.11-21
    • /
    • 2008
  • In recent years, time history analysis has been the method generally used for the seismic analysis of tall buildings with damping devices. When T is the natural period of the first vibration mode of the structure, the sum of the spectral acceleration of the earthquake ground motion is usually adjusted to that of the design response spectrum in the period ranging from 0.2T to 1.5T to meet the requirements of design code. However, when the ground motion is scaled according to the design code, the differences in the responses obtained by response spectrum analysis (RSA) and time history analysis (THA) of the structures increase as the natural period of the structure becomes longer. When time history analysis is performed by using ground accelerations that are scaled according to the design code, base shear is similar to that obtained from RSA, but other responses, such as displacements, drifts and member forces, are underestimated compared to RSA. If these results are adjusted by multiplying with the scale-up factor, the scaled responses become much smaller. Therefore, a scaling method of ground motions corresponding with the design code is proposed in this study, as a way of assisting structural engineers in generating artificial ground motions.

Reduced model experiment to review applicability of tunnel pillar reinforcement method using prestress and steel pipe reinforcement grouting (프리스트레스 및 강관보강 그라우팅을 이용한 터널 필라부 보강공법의 적용성 검토를 위한 축소모형 실험)

  • Kim, Yeon-Deok;Lee, Soo-Jin;Lee, Pyung-Woo;Yun, Hong-Su;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.495-512
    • /
    • 2022
  • Due to the concentration of population in the city center, the aboveground structures are saturated, and the development of underground structures becomes important. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy, and workability to the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability, and economic feasibility, it is necessary to review the theoretical and numerical analysis of the actual behavior mechanism. Therefore, a scaled-down model experiment was conducted. The reduced model experiment was divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), PC strand + steel pipe reinforcement grouting (Case 2), and no reinforcement (Case 3), and the displacement of the pillar and the earth pressure applied to the wall were measured. Through experiments, it was confirmed that the PC stranded wire + steel pipe reinforcement grouting + prestress method is the most excellent reinforcement method among various construction methods. It was judged that it could be derived.

Seismic Capacity Evaluation of Existing Medium-and low-rise R/C Frame Retrofitted by H-section Steel Frame with Elastic Pad Based on Pseudo-dynamic testing (유사동적실험에 의한 탄성패드 접합 H형 철골프레임공법으로 보강 된 기존 중·저층 R/C 골조의 내진성능 평가)

  • Kim, Jin-Seon;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • In this study, to improve the connection performance between the existing reinforced concrete (R/C) frame and the strengthening member, we proposed a new H-section steel frame with elastic pad (HSFEP) system for seismic rehabilitation of existing medium-to-low-rise reinforced concrete (R/C) buildings. This HSFEP strengthening system exhibits an excellent connection performance because an elastic pad is installed between the existing structure and reinforcing frame. The method shows a strength design approach implemented via retrofitting, to easily increase the ultimate lateral load capacity of R/C buildings lacking seismic data, which exhibit shear failure mechanism. Two full-size two-story R/C frame specimens were designed based on an existing R/C building in Korea lacking seismic data, and then strengthened using the HSFEP system; thus, one control specimen and one specimen strengthened with the HSFEP system were used. Pseudodynamic tests were conducted to verify the effects of seismic retrofitting, and the earthquake response behavior with use of the proposed method, in terms of the maximum response strength, response displacement, and degree of earthquake damage compared with the control R/C frame. Test results revealed that the proposed HSFEP strengthening method, internally applied to the R/C frame, effectively increased the lateral ultimate strength, resulting in reduced response displacement of R/C structures under large scale earthquake conditions.