The Pullout Behavior of a Large-diameter Batter ]Reaction Piles During Static Pile Load Test for a Large Diameter Socketed Pipe Pile

대구경 말뚝의 정재하시험시 대구경 경사반력말뚝의 인발거동

  • 김상옥 (현대건설 중앙하수처리장) ;
  • 성인출 (경성대학교 대학원 토목공학과) ;
  • 박성철 (경성대학교 대학원 토목공학과) ;
  • 정창규 (부산광역시 건설본부) ;
  • 최용규 (경성대학교 건설·환경공학부)
  • Published : 2002.02.01

Abstract

The pullout behavior of large-diameter steel pipe piles(diameter = 2,500mm, length = 38~40m), which were designed as compression piles but used as reaction piles during a static compression load test on a pile(diameter = 1,000m, length = 40m), was investigated. The steel pipe piles were driven by 20m into a marine deposit and weathered soil layer and then socketed by 10m into underlying weathered and soft rock layers. The sockets and pipe were filled with reinforced concrete. The steel pipe and concrete in the steel pipe zone and concrete and rebars in the socketed zone were fully instrumented to measure strains in each zone. The pullout deformations of the reaction pile heads were measured by LVDTs. Over the course of the study, a maximum uplift deformation of 7mm was measured in the heads of reaction piles when loaded to 10MN, and 1mm of residual uplift deflection was measured. In the reaction piles, about 83% and about 12% of the applied pullout loads were transferred in the weathered rock layer and in the soft rock layer, respectively. Also, at an uplift force of 10MN, shear stresses due to the uplift in the weathered rock layer md soft rock layer were developed as much as 125.3kPa and 61.8kPa, respectively. Thus, the weathered rock layer should be utilized as resisting layer in which frictional farce could be mobilized greatly.

본 연구에서는 직경 1,000mm의 시험말뚝에 대한 압축정재하시험 수행시 반력말뚝으로 사용된 직경 2,500mm의 대구경 경사반력소켓말뚝의 인발거동을 분석하였다. 경사반력말뚝은 풍화암층과 연암층 10m에 걸쳐서 현장타설말뚝으로 소켓되어졌으며, 강관부는 강관과 속채움콘크리트로, 그리고 소켓부는 콘크리트와 철근으로 구성되었다. 각 구성부재에 작용하는 변형율을 측정하기 위해 센서를 설치하였으며, 반력말뚝두부의 인발량을 측정하기 위하여 LVDT를 설치하였다. 정재하시험중 재하된 최대인발하중은 10MN이었으며 최대인발변위는 7m, 잔류인발변위는 최대 1mm 정도 발생하였다. 인발하중의 83%를 풍화암층에서 그리고 12%를 연암층에서 지지하는 것으로 나타났으며 풍화암에 소켓된 철근콘크리트부와 연암에 소켓된 털근콘크리트부에서 각각 125.3kPa와 61.8kPa의 인발응력이 발생하였다. 따라서, 풍화암층에서도 인발하중을 충분하게 지지하고 있으므로 풍화암층은 마찰력을 크게 발휘하는 지지층으로 사용되었다.

Keywords

References

  1. 한국지반공학회 논문집 v.16 no.4 Elastometer-200을 이용한 부산지역 해저 지반의 지반특성치 평가 김동철;최용규
  2. 경성대학교 지반공학연구 보고서 Report No. KSU/GT-00-1 광안대로 건설공사의 대구경 말뚝 정재하시험과 수치해석을 통한 말뚝 기초의 안정성 검토 보고서 최용규
  3. ASTM D1143-81 Standard Test Method for Piles Under Static Axial Compressive Load
  4. ASTM D3689-90 Standard Test Method for Individual Piles Under Static Axial Tensile Load
  5. Proc. of the conference recent large - scale fully instrumented pile tests in clay held at the Institution of Civil Engineers Static and Cyclic Axial Load Tests on Two 762 mm Diameter Pipe 'Piles in Clays, Large - scale pile tests in clay Cox, W.R.;Cameron, H.K.;Clarke, J.
  6. Geotechnical Instrumentation for Monitoring Field Performance Dunnicliff, J.
  7. Proc. of the 3rd International Geotechnical seminar on Bored and Auger piles Applications of Large - Diameter Bored Piles in the United States, Deep Foundations on Bored and Auger piles O'Neill, M. W.
  8. Drilled Shafts: Construction and Design no.HI-88-042 Reese, L.C.;O'Neill, M.W.
  9. Proceedings, Foundation Engineering: Current Principles and Practices v.2 New Design Method for Drilled Shafts from Common Soil and Rock Tests Reese, L. C.;O'Neill, M. W.