• Title/Summary/Keyword: 부재력

Search Result 753, Processing Time 0.027 seconds

Determination of the Accurate Effective Length for Buckling Design of Cable-Supported Bridges (케이블지지교량의 좌굴설계를 위한 유효좌굴길이 산정)

  • Jin, Man Sik;Kyoung, Yong Soo;Lee, Myung Jae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.355-363
    • /
    • 2004
  • In order to obtain the effective length factor of beam-column members of plane frames, this paper extensively used an alignment chart approach, based on the nomograph given in LRFD-AISC specification commentaries. However, it should be noted that various simplifications and assumptions were introduced in constructing the alignment chart. To overcome the practical limitations of the alignment chart, this paper proposes a simple but accurate procedure that determined the effective buckling length for stability design of main members of cable-supported bridges. This method requires the full system buckling analysis. The numerical examples showing the suitability of the present scheme are discussed and some conclusions are drawn.

[Retracted]Analysis of Minimum Penetrated Depth of Pile bent of IPM Bridge ([논문철회]토압분리형 일체식 교대 교량의 파일벤트에 대한 최소근입깊이 해석)

  • Kim, Hongbae;Kim, Taesu;Park, Jongseo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.45-53
    • /
    • 2017
  • IPM bridge was developed to revise the problems of IAB bridge by Nam et al, (2016). This research conducted the p-y analysis to examine the parameter traits among the protruded length (H), penetrated length (L) of pile bent and soil conditions. From the results, the maximum bending moment happened in the top segment of pile bent, because it is integrated to the upper structure. Also, the maximum shear force was shown in the boundary of the sand and weathered soil zones according to the analysis soil conditions. The maximum member force and unbraced length is converged when the ratio (L/H) of protruded length (H) and penetrated length (L) is 1.0. The larger material force is happened, if the pile bent is penetrated shallowly compared to the protruded length. The definite inflection points were shown in the horizontal displacement curve from the p-y analysis, also the smaller penetrated length made the curve grade slower.

Seismic Behavior of Web-Continuous Diagrid Nodes (웨브 연속형 다이아그리드 노드의 이력 특성)

  • Jeong, In Yong;Kim, Young Ju;Ju, Young K;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.375-384
    • /
    • 2009
  • The application of the diagrid structural system has increased of late, but cyclic loadings such as winds and earthquakes cannot be fully understood through only an analytical study due to the difficulty of considering its welding property. In this study, diagrid nodes that had been scaled down to 1/5 of their full sizes were tested to find out their structural behavior under seismic or wind loads. Four specimens were used with five parameters, including the welding method and the design details. Cyclic loading tests were carried out, where a tensile load was applied to one brace member and a compression load to the other. The major failure modes in the tests were only failure of bending with tensile stress and tension failure. The welding method and the design details had no effect on the initial stiffness and yielding stress but play a significant role in the failure mode and energy dissipation, respectively.

An Improved Method for Initial Shape Analysis of Subpension Bridges (현수교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.219-229
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal 'displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons. Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

An Experimental Research on the Shear Friction Behavior of Beam-Column Joints of Partial Precast Concrete Structures (부분PC 보-기둥 접합부의 전단 마찰 거동에 관한 실험 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • An experimental program was initiated to investigate the structural capacity of PC (Precast Concrete) beam-column joints used for the underground parking structure. Static testing of 4 typical PC beam-column joints specimens was conducted. Specimens were designed to span a range of parameters typically encountered for such members, based on findings from the survey of existing PC joint details used in the construction fields in Korea. The specimens were four by their joint types and testing parameters. The specific structural behavior germane to each specimen, and general observations on overall member behavior as a function of the considered parameters, are reported. From the results of tests on four PC joints specimens, the beam-column joints of PC structure used for the underground parking building was found to have similar structural capacities when comparing to the cast-in-place concrete system.

A Study on the Development of Force Limiting Devices(FLD) which Induce Yielding before Elastic Buckling (좌굴전 항복유도 장치(FLD) 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak;Oh, Young Suk;Kim, Chae Yeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.279-287
    • /
    • 2013
  • The steel members are applied to high rise building since they have high strength compare to the concrete member. On the other hand, the elastic buckling is likely to occur in steel member because of their small section. When the elastic buckling occur, the steel structure lose a load carrying capacity. The steel frame would be unstable due to a rapid decline in strength by buckling. The purpose of this study is the development of FLD(Force Limiting Device) to prevent a elastic buckling for a slender member. Further, the behavior of steel structures with FLD would be stable by high energy absorption capacity. The proposed type of FLD is the type of out-of-plane resistance. In this study, member test and FEM analysis for proposed type were performed. The test parameters are thickness and gradient angle of out-of-plane plate. The proposed type may be effective method for FLD.

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Ultimate Strength Analysis of Connections of Floating Pendulum Wave Energy Converter (부유식 진자형 파력발전장치의 연결부 최종강도해석)

  • Sohn, Jung Min;Cheon, Ho Jeong;Shin, Seung Ho;Hong, Key Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • A floating offshore structure has high tendency to occur the buckling when compressive, bending and shear loads applied. When the buckling is occurred, in-plane stiffness of structure is remarkably decreased. And it has a harmful effect on the local structural strength as well as global structural strength. In the present study, it has been investigated the ultimate strength of tubular members which is located between a floater and a damping plate of the floating pendulum wave energy converter. Nonlinear finite element method is conducted using the initial imperfection according to 1st buckling mode which is obtained from the elastic buckling analysis. It is also noted the ultimate bending strength characteristic varying with a diameter, thickness and stiffeners of the tubular member.

Evaluation on Bearing Resistance of Transverse Members in Steel Strip Reinforcement using Pullout Tests and Theoretical Equations (인발시험과 이론식을 이용한 강재스트립 보강재에 설치된 지지부재의 지지저항 특성 평가)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results are compared with theoretical equations and then the failure mechanism of transverse members is evaluated. The bearing resistance stress(${\sigma}^{\prime}_b$) of transverse members, which is applied pullout force at 50mm displacement, is closed from punching shear failure to general shear failure. The behavior by increment of a number of transverse members became closer to general shear failure. The behavior of transverse members at maximum pullout force, which is closed to general shear failure, is indicated that it is unrelated to normal stress and a number of transverse members. However, if the allowable displacement of reinforced soil wall is considered, it is impossible to apply in design. The test results are compared with bearing resistance evaluations using Prandtl's plastic theory and cylindrical cavity expansion theory. The analysis results are indicated that the bearing resistance by pullout tests is closed to predicted result by Prandtl's plastic theory, which are located between general shear failure and punching shear failure.

  • PDF