• Title/Summary/Keyword: 부식평가

Search Result 1,170, Processing Time 0.038 seconds

저방사화 Cr-Mn-W-V계 스테인리스강의 미세 조직 특성 및 부식 저항성에 미치는 질소첨가와 소둔 열처리의 영향

  • 장현영;박용수;김영식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.591-596
    • /
    • 1995
  • 핵융합로 제1벽재로서 주목받고 있는 저방사화 Cr-Mn-W계 오스테나이트 스테인리스강에 소량의 V을 첨가하고 그 기본 조성에 시그마상의 생성억제와 합금의 고온강도 향상에 효과가 있는 질소함량을 변화시켜 미세 조직 특성 및 부식 저항성에 미치는 영향을 살펴보았다. 질소함량의 변화에 의한 영향과 더불어 소둔열처리 온도의 영향도 살펴보았다. 부식저항성 평가를 위해서는 양극분극시험, 침지시험, Huey시험을 행하였으며, 기계적 성질 평가를 위해서는 경도시험 및 인장 시험을 행하였다 그 결과 질소량이 증가할수록 오스테나이트상이 안정화되어 그 양이 증가하며 고용강화에 의해 경도치도 함께 증가함을 알 수 있었다 경도치는 또한 소둔온도가 증가함에 의해 감소함을 알 수 있었다. 한편 소둔온도가 증가할수록 페라이트량이 증가함을 확인하였다. 부식저항성은 질소량이 증가할수록 소둔온도가 증가할수록 향상됨을 알 수 있었다.

  • PDF

Effect of Etching Treatment of Tungsten Sulfide Lubricant on S trength and Life of Diamond Micro-blades (금속 황화물 윤활제의 표면 부식처리가 다이아몬드 블레이드의 기계적 특성 및 절삭 성능에 미치는 영향)

  • Kim, Song-Hui;Jang, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.324-325
    • /
    • 2012
  • 다이아몬드 마이크로 블레이드의 절삭 효율을 향상시키고 소결 공정 중 윤활제의 유동성과 젖음성이 다이아몬드 마이크로 블레이드의 물성에 미치는 영향을 연구하기 위해 Cu/Sn 금속 결합재에 표면을 부식시킨 $WS_2$와 부식을 시키지 않은 $WS_2$ 윤활제를 각각 동일한 체적 분율로 첨가하였다. 윤활제의 표면 개질에 따른 마이크로 블레이드 결합재의 내마모성과 굽힘 강도 시험을 행하였고, 실착 절삭 시험을 위한 마이크로 블레이드 시편을 제작하여 수명 및 효율을 평가하였다. Cu/Sn 금속 결합재 파면에서의 $WS_2$ 입자 방향 분석을 통해 표면 개질 과정을 거친 $WS_2$가 압축소결 공정 중 압축 방향에 수직하게 위치하려는 경향이 크게 나타났으며, 이는 소결체의 강도와 경도를 향상시켰다. 마이크로 블레이드의 절삭 효율 및 수명을 평가하기 위한 실착 절삭 시험 결과, 윤활제 표면 부식처리는 처리하지 않은 경우에 비하여 절삭성능은 비슷하게 관찰되었으나 결합재와의 계면 결함을 줄이므로써 블레이드의 수명을 연장시킬 수 있었다.

  • PDF

Corrosion control of drinking water pipes by corrosion inhibitor (부식억제제에 의한 상수도관의 부식제어)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2306-2310
    • /
    • 2010
  • Corrosion is a complex series of oxidation/reduction reactions between at the water-metal surfaces and materials in which the water is stored or transported. With respect to the corrosion potential of drinking water, the primary concerns include the potential presence of toxic metals, such as lead and copper; deterioration and damage to the household plumbing, and aesthetic problems such as stained laundry, and bitter taste. This study was performed to evaluate the effects of corrosion inhibitors on corrosion rates, Fe and Cu release concentration in water distribution pipes. Decrease of corrosion rates were strongly related to phosphate corrosion inhibitors. Considering that typical corrosion processes consists of a series of electrochemical reaction at the metal surface in contact with water, corrosion rates were positively correlated with Fe release.

An Experimental Study on Corrosion Resistance of Cracked Concrete (균열 콘크리트에서의 부식저항성에 관한 실험적 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Ann, Ki-Yong;Lee, Kewn-Chu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.517-520
    • /
    • 2008
  • In this study, corrosion resistance of steel in cracked-reinforced concrete was performed according to experimental method. Mixed design is OPC, 30% PFA, 60% GGBS and 10% SF, respectively. Moreover, corrosion resistance test was measured using ultra testing machine for 0.3mm crack induction. The corrosion resistance of blended concrete shows the results following OPC > 10%SF > 30% PFA > 60% GGBS after 60days curing. In case of mass loss test, embedded reinforcement in OPC concrete surveyed the minimum corrosion and appeared better corrosion resistance than blended concrete. As a result, corrosion resistance of sound concrete is higher than cracked concrete. Moreover, corrosion resistance of binary concrete is lower than OPC.

  • PDF

Evaluation of Corrosion Resistance with Grout Type and Tendon (그라우트 품질을 고려한 텐던의 부식저항성 평가)

  • Ryu, Hwa-Sung;An, Ki-Hong;Koh, Kyung-Taek;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.76-82
    • /
    • 2018
  • Grout in duct is very effective protection from tendon corrosion in PSC(Prestressed Concrete) structure. In the work, durability and mechanical tests are performed for two types of grout which are conventionally used one and the improved grout with reduced w/c (water to cement) ratio and silica fume. Tendon system with 1000mm height is prepared and various tests including strength, flow, absorption, and bleeding ratio are conducted. ICM(Impressed Current Method) is adopted for corrosion acceleration in tendon with 12.7mm diameter inside grout. For 2 and 4 days, corrosion acceleration is performed for 2 different type of grout and corrosion amount is investigated. The improved grout shows higher compressive strength by 10 MPa and lower absorption ratio by 50% than the conventional one. It also provides an excellent corrosion reduction to 39.8 %~48.2 % for 2~4 days of acceleration period.

Damage Estimation of Steel Bridge Members by Fatigue Vulnerability Curves Considering Deterioration due to Corrosion with Time (시간에 따른 부식열화가 고려된 피로취약도 곡선을 이용한 강교의 손상 평가)

  • Kim, Hyo-Jin;Lee, Hyeong-Cheol;Jun, Suk-Ky;Lee, Sang-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • A method for assessing fatigue vulnerability of steel bridge members considering corrosion and truck traffic variation with time is proposed to evaluate the reduction of fatigue strength in steel bridge members. A fatigue limit state function including corrosion and traffic variation effect is established. The interaction between the average corrosion depth and the fatigue strength reduction factor is applied to the limit state function as the reduction term of strength. Three types of truck traffic change is modeled for representing real traffic change trend. Monte-Carlo simulation method is used for reliability analysis which provides the data to obtain fatigue vulnerability curves. The estimation method proposed was verified by comparing with the results of reference study and applying to the steel bridges in service.

Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar (부식된 FRP Hybrid Bar의 휨 내력 및 초음파 속도 특성)

  • Choi, Se-Jin;Mun, Jin-Man;Park, Ki-Tae;Park, Cheol-Woo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.397-407
    • /
    • 2015
  • Concrete is a attractive construction material, however durability problem occur due to steel corrosion, which leads propagation to structural safety problem. The recently developed FRP (Fiber Reinforced Plastic) Hybrid Bar has an engineering merit of both structural steel and FRP. Accelerated corrosion test for RC (Reinforced Concrete) samples with normal steel and FRP Hybriud Bar are performed and their flexural capacity is evaluated. Furthermore UV(Ultrasonic Velocity) measurement is attempted for analysis of variation of UV due to corrosion condition. After corrosion test, there is no significant reduction in RC beam with FRP hybrid bar but 11.5% of reduction in the case of normal steel is evaluated with 3.3% of UV reduction. For commercial production of FRP hybrid bar, bond strength evaluation through long-term submerged corrosion is required.

Evaluation of Corrosion Fatigue Characteristics of 12Cr Steel Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 12Cr강 부식 피로특성 평가)

  • Kwon, Sung-Duk;Yoon, Seok-Soo;Song, Sung-Jin;Bae, Dong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.397-401
    • /
    • 2000
  • The corrosion-fatigue characteristics of the 12Cr steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the Rayleigh surface wave. In this study, the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the aged specimens, and then compared to the corrosion-fatigue characteristics. The width of the backward radiation profile decreases as the increase of the aging temperature, which seems to result from the increase of the effective degrading layer thickness. This parameter also shows an inversely proportionality to the exponent, m, in the Paris law which predicts the crack size increasement due to fatigue. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion-fatigue characteristics of the aged materials.

  • PDF

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.