• Title/Summary/Keyword: 부식거동

Search Result 610, Processing Time 0.03 seconds

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes (페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • Kim, Jong Huy;An, Kay Hyeok;Shin, Kyung Hee;Ryoo, Min Woong;Kim, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.814-821
    • /
    • 1999
  • The specific capacitance characteristics of the electric double layer capacitors(ELDC) which were made of phenol based activated carbon fiber(ACF) electrodes. Also the effect of aqueous electrolytes on the cell performance has been investigated with respect to different specific surface areas of electrodes and different kinds of aqueous electrolytes. It has been shown that larger surface area and pore size, higher conductivity of electrodes, and higher ion mobility of electrolytes have better specific capacitances. It has been found that heat treatment at $1200^{\circ}C$ and $CO_2$ post-activation at $900^{\circ}C$ of the electrode are effective to improve the specific capacitance over 145F/g and 165F/g, respectively. The EDLC showed high efficiency and long cycle life over 30000 cycles.

  • PDF

Study of High Temperature Corrosion Behavior of Fe-Cr Steel in Sewage Sludge-(SO2-O2-H2O-bal. CO2) mixed Gas Environment (하수슬러지-(SO2-O2-H2O-bal. CO2) 혼합 가스 분위기에서 Fe-Cr 강의 고온부식거동 연구)

  • Kim, Min Jung;Park, Joo Chang;Ryu, In Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • Two Fe-Cr steels of T22 steel and STS430 steel were corroded at 650 and 750℃ for 100hr in sewage sludge-(0.3% SO2-6% O2-10% H2O-balance CO2) mixed gas environment. T22 steel corroded faster than STS430, indicating that the Cr content significantly influence the corrosion rates. T22 formed thick and non-protective Fe2O3 as the major oxide and Fe3O4 as the minor one. With an increase in corrosion temperature, their corrosion rates increased, being accompanied with formation of pores and cracks in the thickened oxide scales that were non-adherent. STS430 steel formed Fe2O3, Fe3O4 as the outer scale and (Fe, Cr)-O as the inner layer by which its corrosion rate is greatly reduced. Both the T22 and STS430 steel samples formed multi-layered scales by outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions at high-temperature more than 650℃.

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents (생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향)

  • Kim, Hyun Wook;Lee, Woo-Yiel;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • A biliant stent was fabricated using a magnesium alloy wire, a biodegradable metal. In order to control the fast decomposition and corrosion of magnesium alloys in vivo, magnesium alloy wires were coated with biodegradable polymers such as polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly (L-lactic acid) (PLLA), and poly (D, L-lactide-co-glycolide) (PLGA). In the case of PPC, which is a surface erosion polymer, there is no crack or peeling compared to other polymers (PCL, PLLA, and PLGA) that exhibit bulk erosion behavior. Also, the effect of biodegradable polymer coating on the axial force, which is the mechanical property of magnesium alloy stents, was investigated. Stents coated with most biodegradable polymers (PCL, PLLA, PLGA) increased axial forces compared to the uncoated stent, reducing the flexibility of the stent. However, the stent coated with PPC showed the axial force similar to uncoated stent, which did not reduce the flexibility. From the above results, PPC is considered to be the most efficient biodegradable polymer.

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

Investigation on the Effects of Hydrogen Charging on Oxidation Behavior of Ultrahigh-Strength Automotive Steels (초고강도 자동차용 강의 환원정전류인가에 따른 산화 거동 변화 연구)

  • Ha, Heon-Young;Kim, Hye-Jin;Moon, Joonoh;Lee, Tae-Ho;Jo, Hyo-Haeng;Lee, Chang-Geun;Yoo, Byung-Kil;Yang, Won-Seog
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.317-327
    • /
    • 2017
  • The change in the oxidation behavior of three types of B-added ultrahigh strength martensitic steels containing Ti and Nb induced by applying constant cathodic current was investigated. In a 3% NaCl+0.3% $NH_4SCN$ solution, the overall polarization behavior of the three alloys was similar, and degradation of the oxide film was observed in the three alloys after applying constant cathodic current. A significant increase in the anodic current density was observed in the Nb-added alloy, while it was diminished in the Ti-added alloy. Both Ti and Nb alloying decreased the hydrogen overpotential by forming NbC and TiC particles. In addition, the thickest oxide film was formed on the Ti-added alloy, but the addition of Nb decreased the film thickness. Therefore, it was concluded that the remarkable increase in the anodic current density of Nb-added alloy induced by applying constant cathodic current density was attributed to the formation of the thinnest oxide film less protective to hydrogen absorption, and the addition of Ti effectively blocked the hydrogen absorption by forming TiC particles and a relatively thick oxide film.

Experimental study of composite beams consisting structural laminated timber beam with concrete slab (구조용집성재보와 콘크리트슬래브로 구성된 합성보의 실험적 연구)

  • An, Hyun-Jin;Kim, Soon-Chu;Moon, Youn-Joon;Yang, Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.233-236
    • /
    • 2008
  • In the traditional way floors has been constructed there are no shear connectors between the concrete slab and timber joists. In this study, an existing floor system os improved by simply providing normal bolts or lag screw so that the composite action can be achieved. It is evident that the key elements in the composite beam are the shear connectors. The selection of these connectors was based on their shear capacity. The experimental study carried out in this research investigated the flexural behavior of composite beams. The experimental studies of composite beams showed that the ultimated load capacity of the proposed composite beam(LS-S10 specimen) is 1.29 times as high as the noncomposite one. Finally, it can be concluded that LS-S10 specimen consisting structural laminated timber beam and concrete slab can be significantly improved by providing appropriate shear connectors.

  • PDF

An Evaluation of Lap Splice Length of Epoxy Coated Reinforcements Using Beam-End Test (보-단부 시험을 이용한 에폭시 도막 철근의 겹침 이음길이 평가)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.175-182
    • /
    • 2020
  • The application of epoxy coated reinforcements is increased as a means to prevent a corrosion of reinforcements embedded in reinforced concrete structures, However, epoxy coating may reduce the bond capacity between concrete and reinforcement, which results a longer development length and lap splice length. This paper aims to the possibility of modification in lap splice length from reduction of basic development length which was confirmed using a direct pull out test. Total 36 beam specimens were tested to compare the lap splice properties of normal and epoxy coated reinforcements with beam-end test for various lap lengths and diameters of reinforcements. According to the results on failure modes, deformations, and crack widths of this experiments, the modification factor of 1.2 should be used, though the direct bond capacity is assured through direct pull out test.

Validation of Performance of Engineered Barriers in a Geological Repository: Review of In-Situ Experimental Approach (심지층처분장 공학적방벽 성능 실증: 현장실험적 접근법 검토)

  • Cho, Won-Jin;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.137-164
    • /
    • 2018
  • The guarantee of the performance of the engineered barriers in a geological repository is very important for the long-term safety of disposal as well as the efficient design of the repository. Therefore, the performance of the engineered barriers under repository condition should be demonstrated by in-situ experiments conducted in an underground research laboratory. This article provides a review of the major in-situ experiments that have been carried out over the past several decades at underground research laboratories around the world to validate the performance of engineered barriers of a repository, as well as their results. In-situ experiments to study the coupled thermal-hydraulic-mechanical behavior of the engineered barrier system used to simulate the post-closure performance of the repository are analyzed as a priority. In addition, in-situ experiments to investigate the performance of the buffer material under a real repository environment have been reviewed. State-of-the art in-situ validations of the buffer-concrete interaction, and the installation of the buffer, backfill and plug, as well as characterization of the near-field rock and the corrosion of the canister materials are, also performed.

Evaluation of Service Life in RC Column under Chloride Attack through Field Investigation: Deterministic and Probabilistic Approaches (염해 실태조사를 통한 철근 콘크리트 교각의 내구수명 평가 - 결정론적 및 확률론적 해석방법)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • RC (Reinforced Concrete) structures are considered as cost-benefit and durable however performances of structural safety and durability are degraded due to steel corrosion. Service life in RC structure is differently evaluated due to different local environmental conditions even if it is exposed to the same chloride attack. In the paper, 25 concrete cores from field investigation are obtained from 4 RC columns with duration of 3.5~4.5 years exposed to sea water. Through total chloride content measurement, surface chloride contents and apparent diffusion coefficients are evaluated. Service life of the target structure is estimated through deterministic method based on Fick's $2^{nd}$ Law and probabilistic method based on durability failure probability, respectively. Probability method is evaluated to be more conservative and relatively decreased service life is evaluated in tidal zone and splash zone over 40.0 m. Chloride penetration behavior with coring location from sea level and the present limitations of durability design method are investigated in the paper.