• Title/Summary/Keyword: 부분 분사

Search Result 117, Processing Time 0.026 seconds

A Study on Partial Admission Characteristics of a Multi-Stage Small-Scaled Turbine (다단 소형 터빈에서의 부분분사 특성에 관한 연구)

  • Cho, Chong-Hyun;Jeong, Woo-Chun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.943-954
    • /
    • 2010
  • In this study, a radial inflow type turbine was applied and the outer diameter of the turbine rotor was 108 mm. The turbine blade on a circular plate disc was designed as an axial-type because its partial admission rate was 1.4-4.1%. The turbine consisted of three stages. The performance test has been conducted with various admission rates, tip clearances and nozzle flow angles. The turbine output power was measured on each stage. The turbine performance was obtained in a wide rotational speed range in order to compare its performance according to various operating conditions. The net specific output torque was also measured to compare its overall performance. Computational analysis was conducted for predicting turbine performance. The computed results were in good agreement with the experimental results.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

Numerical Analysis for Reduction of Fuel Consumption by Improvement of Combustion Condition in a Common Rail Diesel Engine Generator (커먼레일 디젤엔진 발전기의 연소상태 개선에 따른 연비절감을 위한 수치해석)

  • Kim, Seung Chul;Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.58-64
    • /
    • 2016
  • The main engine of a vehicle is used an common rail diesel engine for improving the efficiency of the whole load area. However, the generator engines is still used mechanical fuel injection valve drive cams. In addition, most of generator engines is applied a part-load operation of less than 50%. Therefore, diesel engine of vehicle set at 100% load is necessary to readjust in order to perform efficient operation because of part-load operation. In this study, the objective is to report the results of the part-load fuel consumption improvement by injection timing readjust to identify the operational characteristics of a generator engine currently operated in the facilities.

An Experimental Study of Surface Pressure on a Turbine Blade in Partial Admission (분사영역과 터빈익형 위치에 따른 표면압 변화에 관한 실험적 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.735-743
    • /
    • 2011
  • In this study, the distribution of surface pressure was measured in a steady state on a turbine blade which was moved the injected region and receded the stagnation region using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The surface pressures on the blade were measured at three different nozzle angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the low solidity caused the low pressure on the blade suction surface at entering region and the reverse rotating force was generated at the low nozzle angle. The positive incidence also made the pressure lower on the suction surface at entering region.

Effect of Pitch Angle Variations On Performance Of Pod Type Waterjet (로터 피치각 변화에 따른 Pod형 워터제트 성능비교)

  • Kim J. H.;Park W. G.;Chun H. H.;Kim M. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.30-34
    • /
    • 2005
  • 고속 선박을 추진하는 한 방법으로 널리 사용되는 물분사 추진은 물을 내부 덕트로 빨아들여 임펠러로 물을 가속시켜 노즐을 통해 분사시킴으로써 입출구의 운동량차이에 의해 추력을 얻는 추진장치이다. 선박의 목적에 따라 사용되는 다양한 형태의 물분사 추진기의 개발을 위하여 모형실험을 통하여 그 성능을 검증하는 부분에서 로터의 피치각 변화에 따른 추진기의 성능 실험을 하는 것은 많은 비용과 시간이 따른다. 따라서 이러한 문제를 해결하기 위하여 본 연구에서는 추진기 내부의 유동장을 4가지 피치각에 따라 추진력을 3차원 비압축성 Navier-Stokes 방정식을 이용하여 해석하였다. 로터의 회전을 고려하여 슬라이딩 다중 격자기법을 적용하였고 추력계수, 토크계수, 그리고 모멘텀을 해석 결과와 비교 분석을 통하여 추진기의 성능과 효율을 추정하였다.

  • PDF

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

Selection of Factors for Performance Optimization on Non-esterified Bio-diesel Fuel Using Fractional Factorial Design (부분요인배치법을 이용한 비에스테르화 바이오 디젤유의 성능 최적화를 위한 인자 선정)

  • Jung, Sukho;Koh, Daekwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-12
    • /
    • 2015
  • Non-esterified bio-diesel fuel saves cost by no esterified process and its performance was more similar to diesel oil than esterified bio-diesel fuel when the fuel blended 95% diesel oil and 5% it was used on diesel engine with electronic control system. A performance optimization is necessary for application of non-esterified bio-diesel fuel blended with diesel oil 95% on the latest diesel engine. In this study, test using fractional factorial design was accomplished at 25% and 50% partial load in order to evaluate influence of controllable 6 factors on responses such as specific fuel consumption, nitrogen oxides and coefficiency of variation of indicated mean effective pressure as basic experiment for performance optimization of this fuel. It is cleared that the injection timing and common rail pressure of 6 factors are mainly effective and its effect level is different according to load.

Effects of Injection Strategies on the Partial Premixed Charge Combustion and Emission Characteristics in a Diesel Engine (디젤엔진의 부분 예혼합 연소 및 배기 특성에 대한 분사전략의 영향)

  • Kim, Jaewoong;Kim, Yungjin;Park, Sangki;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.83-88
    • /
    • 2013
  • Recently, PCCI (premixed charge compression ignition) combustion is studied to reduce both NOx and PM because of homogeneous mixture formation and lower combustion temperature. It has also merit of increasing thermal efficiency owing to better air-fuel mixure. However, it is well known that PCCI combustion has a weakness in fuel economy because PCCI combustion tends to start before TDC. Therefore, it is necessary to find an optimal conditions for PCCI combustion which maintains reduction of NOx, PM and increase of thermal efficiency. In this study, pPCCI combustion was realized by adding early injection strategy to a conventional diesel engine. In addition, the characteristics of pPCCI combustion was analized by comparing conventional diesel injection strategy. The results show that NOx and PM per power in pPCCI combution were reduced compared to a conventional diesel combustion.

An Investigation about Combustion and Emission Characteristics for Pilot Injection Timing on Partially Premixed Charge Combustion Ignition Engine Fueled with DME (파일럿 분사시기에 따른 DME 부분 예혼합 압축착화 엔진의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Pyo, Youngduck;Lee, Youngjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • This work investigated the effects of engine speed and injection timing on combustion and emissions characteristics in a partially premixed charge compression ignition (pPCCI) engine fueled with DME. pPCCI engine especially has potential to achieve more homogeneous mixture in the cylinder, which results in lower NOx and smoke emission. In this study single cylinder engine was equipped with common rail and injection pressure is 700 bar. Total injected fuel mass is 64.5 $mm^3$ per cycle. The amount of pilot injection of the entire injection 12.5% is tested. Results show that NOx emission is decreased while IMEP is increased as the retard of injection timing. Besides, NOx emissions are slightly rised as well as IMEP is increased with the increase of engine speed.