• Title/Summary/Keyword: 복합형 마운트

Search Result 12, Processing Time 0.022 seconds

New Mount with Moving-Coil-Type Electromagnetic Actuator for Naval Shipboard Equipment (가동코일형 전자기식 작동기를 결합한 함정 탑재장비용 마운트 개발)

  • Shin, Y.H.;Moon, S.J.;Jung, W.J.;Jeon, J.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.885-894
    • /
    • 2013
  • In this study, a new hybrid mount with a moving-coil-type electromagnetic actuator is developed to reduce the vibration transmitted from naval shipboard equipment to the ship hull structure. The detailed design of the hybrid mount is determined through several design stages with electromagnetic numerical analysis using Maxwell software. The hybrid mount, which combines a rubber mount with an electromagnetic actuator, has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to check the design specifications. Finally, control tests are carried out on the hybrid mount to confirm its performance and applicability.

Development of a Hybrid Mount System Combined Airspring with Piezostack Actuator for Microvibration (공기스프링과 압전작동기를 결합한 복합형 미진동 방진마운트 시스템 개발)

  • Moon, S.J.;Jung, H.J.;Shin, Y.H.;Jang, D.D.;Jeong, J.A.;Moon, Y.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • A new hybrid mount system is proposed for microvibration control in a high-tech factory. The mount consists of an airspring as a passive device and a piezostack actuator as an active device. The two devices are connected in series. Some numerical simulations and experimental tests are carried out to evaluate isolation performance of the mount system comprising of four proposed hybrid mounts. As a control logic, the specific algorithm is adopted for considering multiple target frequencies of excitation based on a Filtered-X LMS algorithm. The results are compared with isolation performance of the passive airspring mount system. It is confirmed that the proposed hybrid mount system has great performance on microvibration.

A Study on the Development of a Hybrid Electromagnetic Actuator Against Microvibration (미진동 저감을 위한 복합형 전자기식 작동기의 개발에 대한 연구)

  • Moon, S.J.;Park, S.H.;Jeong, J.A.;Huh, Y.C.;Kim, C.H.;Choi, S.M.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.475-483
    • /
    • 2011
  • A hybrid electromagnetic actuator with an air mount is designed so as to achieve the desired isolation reduce the vibration efficiency on the floor vibration. The performance specification of the hybrid electromagnetic actuator is determined based on the vibration criterion for vibration-sensitive equipment. In the design stage of the electromagnetic actuator, the simple reluctance method is adapted to analyze magnetic circuits. The result is verified by finite element analysis using ANSYS Emag. Finally, in order to confirm the design performance, a dynamic characteristic test is carried out for the prototype of a hybrid electromagnetic actuator.

A Comparative Study on the Dynamic Characteristics and Control Performances of Hybrid Mounts According to Element Configuration (배치형식에 따른 복합형 마운트의 동특성 및 제어성능에 대한 비교연구)

  • Cho, H.Y.;Moon, S.J.;Shin, Y.H.;Jung, W.J.;Won, M.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.556-563
    • /
    • 2012
  • This study focuses on the element configuration of hybrid mounts which are combined with passive elements and active elements. The seven configurations are presented according to connection of an active element to a passive element. The dynamic characteristics and control performance of them are investigated qualitatively using Bode plots. With reference to the transmitted force from internal to external, three cases are selected. In addition, some numerical simulations for the three cases are carried out to confirm the performance quantitatively. Based on this research results, a novel hybrid mount with excellent performance will be able to be developed.

Performance Evaluation of a Mixed-Mode Type ER Engine Mount (I);Manufacturing and Test of Engine Mount (복합모드형 ER엔진마운트의 성능평가 (I);엔진마운트의 제작 및 시험)

  • Choe, Yeong-Tae;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.370-377
    • /
    • 2000
  • This paper presents a mixed-mode type ER(electro-rheological) engine mount, and its vibration control performance for a passenger vehicle is presented. The field-dependent yield stress of a transfo rmer oil-based ER fluid is empirically distilled in both shear and flow modes. This is then incorporated with the governing equation of motion of the proposed mixed-mode(shear mode plus flow mode) type engine mount. The damping force is analyzed with respect to the intensity of the electric field and design parameters such as electrode gap. Subsequently, the ER engine mount which is equivalent to the conventional hydraulic engine mount in terms of the damping level is designed and manufactured. Both computer simulation and experimental test are undertaken in order to evaluate vibration isolation performance. In addition, this performance is compared with that of the conventional hydraulic engine mount.

Vibration Control of CD-ROM Feeding System Using ER Fluids (ER 유체를 이용한 CD-ROM 피딩 시스템의 진동 제어)

  • 김형규;임수철;최승복;박영필
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1999
  • This paper presents vibration control of a drive feeding system consisting of a new type of CD-ROM(compact discread only memory) mount using electro-rheologocal(ER) fluid. Chemically treated starch particles and silicon oil are used for ER fluid. and its field-dependent yield stresses are experimentally distilled under both the shear and the flow modes. On the basis of the yield stress, an appropriate size of ER CD-ROM mount adapted to conventional feeding system is designed and manufactured. Vibration isolation performance of the proposed mount is evaluated in the frequency domain and compared with that of conventional rubber mount. The ER CD-ROM mount is then installed to the drive feeding system and the system equation of motion is derived. Following the formulating the sky-hook controller, computer simulation is undertaken in order to evaluate vibration suppression of the feeding system subjected to various disturbances(excitations).

  • PDF