• Title/Summary/Keyword: 복합지반거동

Search Result 164, Processing Time 0.022 seconds

A Study on the Behaviour of an Earth and Rockfill Dam Due to Reservoir Water (저수변화에 따른 사력댐의 거동 연구)

  • Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.61-70
    • /
    • 2003
  • The behaviour of an earth and rock-fill dam is complicated due to reservoir water and various materials in zoned dams. Different materials with a wide range of permeability and seasonal variation of reservoir water result in the time dependent post-constructional behaviour. In aged dams it is often required to control water level to keep the dams safe. In this case information on the post-constructional dam behaviour is important. However, present geotechnical knowledge does not fully support the occasion. In this study the post-constructional behaviour of a dam is investigated using coupled finite element models for series of idealized water reservoir cases: impoundment, draw down, seasonal fluctuation with different rising and falling speeds. Numerical results were analysed in respect of geotechnical parameters such as load transfer, hydraulic fracturing potential and stress paths. It is shown that the control of water level is an important factor while operating dams.

A Comparative Study on the Effect of Promoting Consolidation between SCP and GCP (SCP와 GCP의 압밀촉진효과에 관한 비교 고찰)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of model tests were performed in laboratory to evaluate promoting consolidation of compaction pile methods for soft ground improvement. For the model tests, composite soil samples that have 10% replacement area ratio were prepared by using sand, gravel, and sandy gravel for the materials of compaction piles. After loading to each composite soil sample, the excess pore pressure dissipation and settlement were investigated. In addition, the behavior of clay mixed with each compaction pile was also monitored at the end of consolidation to evaluate clogging phenomenon. As a test result, the effects for decreasing settlement and promoting consolidation by GCP were prominent, and the mixed clay was not monitored in all of the three compaction piles.

  • PDF

Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground (GCP 복합지반의 거동분석을 위한 유한요소해석)

  • Kim, Gyeong-eop;Park, Kyung-Ho;Kim, Ho-Yeon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.19-32
    • /
    • 2018
  • Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.

An Investigation of Tunnel Behaviour Using a Time-based 2-D Modelling Method (시간-파라미터 법에 의한 터널거동 특성 연구)

  • Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2002
  • Tunnel construction is a complex three dimensional operation. Since, however, it is neither possible nor useful to simulate all conditions and parameters in detail, a simplified two dimensional model is commonly employed in practice. The simulation of three dimensional conditions by a two dimensional model should use empirical parameters. The numerical predictions indicate that analysis results are highly dependent on the parameters. An improved modelling method based on time was adopted to account for three dimensional effect at the tunnel heading and time dependent nature, and used to perform an analysis of tunnelling in decomposed granite. The effects of weathering degree, tunnel shape and multi-drift excavation were investigated by using the method. It is identified that a structural benefit can be obtained by adopting a horse-shoe-shaped cross section with multi-drift excavation in mixed-force ground condition.

Case Study of Stress Concentration Ratio of Composite Ground Improved by Deep Cement Mixing Method (심층혼합처리공법으로 개량된 복합지반의 응력분담비에 대한 사례 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3216-3223
    • /
    • 2012
  • Deep cement mixing method (DCM) is one of the most effective improving methods for deep soft ground. The strength of soft soil can be increased in a short period of time with less noise and vibration. However, it is necessary to determine the stress transferring and concentration ratio of the composite soft ground for estimating the settlement behaviors. In this study, a model test was undertaken to investigate the stress distribution of the improved soil. Results of the model test shows that stresses were concentrated mainly on the improved areas by DCM and the concentration ratios (35.4, 28.6, 27.02) were obtained using several different techniques. These were well in accordance with other previous research results (26.52, 32.5).

Characteristics of Shear Behavior for Sand-Clay Composite by Triaxial Test (삼축압축시험에 의한 모래-점토 복합시료의 전단거동 특성)

  • Lee, Jin-Soo;Kim, Jae-Il;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • To examine the general features of a sand-clay composite triaxial test by making specimen varying ratios of diameters (dw) of sand columns that are installed on the soft ground as drains to diameters (de) of drain zone so called drainage space ratio (n=de/dw), densities of the granular columns, and strength of soft soils round around. I also conducted a test to research the reinforcement ability and effects of the ground when the granular columns are wrapped with supplementary materials such as geotextile. The results of the triaxial compression test showed that the shear strength increase is much big when the granular columns are wrapped with supplementary materials, while the shear strength increases as the diameter and density of the granular column increase in general. Also the drainage space ratio shows a distinct increase just below 3 and a similar shear behavior to sand is appeared. The pore water pressure coefficient decreases as the drainage space ratio decreases, however, when the drainage space ratio is less than 3~4, it declines significantly as shown in the results of shear behavior.

  • PDF

Numerical Analysis on the Behavior of Revetment Reinforced by Sand Compaction Pile According to Area Replacement Ratio (수치해석을 이용한 모래다짐말뚝 치환율에 따른 호안 구조물의 거동 분석)

  • Kim, Byoung-Il;Bong, Tae-Ho;Han, Jin-Tae;Jang, Young-Eun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • Sand compaction pile (SCP) is a ground improvement method which is used to secure the stability of the soft ground by using a type of replacement pile filled with coarse grained material. The behavior characteristics of the SCP, which is frequently used for improving both the onshore and offshore ground, is governed by the ground condition, the installation method, and replacement ratio. Therefore, the stability of the SCP in terms of the bearing capacity and displacement needs to be evaluated considering both the design values and in-situ conditions of construction site. In this study, numerical analysis is carried out based on the conditions of 00 revetment construction site in South Korea where unexpected displacement occurred during construction of SCP. Based on the analysis results, the displacement of the revetment structure according to the replacement ratio of the SCP was compared to the result calculated from design formulas. The results showed that the lateral displacement can be exceeded the reference value from proposed criteria regardless of increased replacement ratio of SPC. It is also confirmed that the behavior of the structure according to the replacement ratio of SPC in not reflected in the existing calculation methods. Therefore, the stability of the SCP composite ground should be examined through the site inspection after the SCP construction.

Excess Pore Water Pressure Response in Soft Clay under Embankment (성토하부 연약지반에서의 과잉간극수압 거동)

  • Kim, Yun-Tae;Kim, Nak-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.105-112
    • /
    • 2002
  • Increases in excess pore water pressure without change of surcharge load were reported in clay underneath embankment at Berthierville and Olga sites after the end of construction. These abnormal phenomena could not be explained by classical consolidation theory. This paper presents a nonlinear viscoplastic model to interpret an increase in pore water pressure on natural clay, The proposed model can consider the combined processes of pore water pressure dissipation according to Darcy's law and pore water pressure generation due to viscoplastic strain, as well as time-dependent viscoplastic behaviour and strain rate dependency of preconsolidation pressure. The calculated results using numerical analysis are compared with measured ones under embankments built on soft clay at Berthierville and Olga in Quebec, Canada. It may be possible to explain the phenomenon of excess pore water pressure increase after the end of construction using the proposed nonlinear viscoplastic model.

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.