• Title/Summary/Keyword: 복합재료 평판

Search Result 143, Processing Time 0.022 seconds

Local Response Recovery for Multilayered Composite Panels using Mesh Superposition (유한요소격자중첩을 이용한 복합재료평판의 변위 및 응력의 복원)

  • 박진우;김용협
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.89-92
    • /
    • 2000
  • In this paper, an effective procedure is presented for the local recovery of displacements and stresses in multilayered composite panels, which incorporate the local refinement using mesh superposition. The mesh superposition method is used to refine the global coarse mesh by superimposing refined mesh to the localized zone of interest without transition zones. The finite element model used is a solid element based on the Hellinger-Reissner variational principle. The a posteriori computation of the through-the-thickness distributions of displacements and stresses is achieved using a predictor-corrector procedure. The procedure utilizes the superconvergent stresses and nodal displacements of the finite element patch. The element patch is generated by locally superimposing a refined local mesh to the coarse global mesh.

  • PDF

Interlaminar stress behavior of laminated composite plates under Low velocity Impact (저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

Direct Numerical Simulation of Composite laminates Under low velocity Impact (저속충격을 받는 적층복합재료 평판의 직접 수치모사)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. But it is well known that the conventional approach based on the homogenization has the limit in description of damage. The work reported here is an effort in getting better predictions of dynamic behavior and damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials are investigated and compared with the results of the homogenized model which has been used in the conventional approach to impact analysis. Also the multiscale model based on DNS concept is developed in order to enhance the effectiveness of impact analysis, and we present the results of multiscale analysis considering micro and macro structures simultaneously.

Vibration Control of the Continuous System Under White Noise Disturbance (백색잡음가진을 받는 연속체의 진동제어)

  • Paik, Jong-Han;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.116-120
    • /
    • 1994
  • 최근 항공우주 및 생산자동화 분야의 급격한 발달에 따라 정밀도와 효율성을 향상시키기 위해 저중량, 고강도 구조물이 요구된다. 그러나 경량화 추세로 인해 수반되는 구조물의 유연성 증가로 외력에 대한 구조응답의 진폭이 커지고 구조물의 피로 수명이 단축되어 매우 위험한 상황에 이를 수 있다. 이런 바람직하지 않은 진동현상을 제어하기 위해 여러 제어이론을 응용한 진동억제시스템의 연구가 활발하며, 신소재인 압전재료의 개발로 새로운 방향이 제시되고 있다. 압전재료는 유연한 구조물에 부착되어 압전재료의 수축, 팽창 운동에 의해 발생된 에너지를 부착된 구조물에서의 제어력으로 사용되어, 진동 혹은 자세 및 형상 제어에 활용되고 있다. 압전재료에 대한 연구로는 Crawley, de Luis3가 보의 표면 혹은 내부에 압전세라믹을 부착하여 액튜에이터로 사용하는 경우 집중모멘트를 가하는 역할을 함을 밝혔고, Hanagud, obal은 압전재료를 센서와 액튜에이터로 사용해 복합재료 보에 대한 최적 진동제어 알고리즘을 개발, 그 성능에 대한 효과를 조사하였고 임의의 위치에 부착된 센서 및 액튜에이터를 고려한 복합재료 보의 운동방정식을 유한요소법을 이용 유도하였으며 변위율 피드백(rate feedback)과 모달피드백(modal feedback) 제어기를 적용하여 진동제어 효과를 고찰하였다. 그리고 Tomas, James, Hubbard는 압전필름을 액튜에이터로 사용해 복합재료 보에 Liapunov 제어기와 변위율 피드백 제어기를 사용하여 능동감쇠기를 설계하였고, Lee, Chaing, Sullivan은 압전필름을 센서와 액튜에이터로 사용해 평판에 변위율 피드백 제어기를 적용한 능동감쇠기를 설계하고 실험적으로 수행하였다. Base가 백색잡음가진을 지속적으로 받을 때 보끝의 움직임이 최소가 되도록 제어하고자 연구를 수행 중인 바 그 결과로소 본 논문에서는 적용시켰고 F-P-K 방정식을 이용해 확률영역으로 변환하여 LQR 제어기와 pole allocation 제어기를 시스템에 적용시켜 우수한 특성을 갖음을 제어 시뮬레이션의 결과를 통해 입증하였다.

  • PDF

Thermal Deformation Analysis of L-shaped Composite During Cure Process by Viscoelastic Model (점탄성을 고려한 L-형상 복합재료 성형시 열변형 해석)

  • Seong, Dong-Yun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.220-227
    • /
    • 2020
  • When curing the composite, the fibers have little thermal deformation, but the resin changes its properties with time and temperature, which leads to residual stress in the product. Residual stress is caused by the difference in the coefficient of thermal expansion of the fibers and resin during the curing process and the chemical shrinkage of the resin. This difference causes thermal deformation such as spring-in and warpage. Thermal deformation of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In this study, a subroutine was developed to predict thermal deformation by applying 3-D viscoelastic model. The finite element analysis was verified by comparing the results of the plate analysis of the 2-D viscoelastic model. Spring-in of L-shaped structure was predicted and analyzed by applying the 3-D viscoelastic model.

Layup Optimization for Composite Laminates with Discrete Ply Angles (이산 섬유 배열각을 이용한 복합재료 적층 평판의 최적 설계)

  • Kim, Tae-Uk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles is used for optimization of composite laminated plates. To handle discrete ply angles, the branch and bound method is modified. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region, which shows the algorithm can be effectively used for layup optimization of composite laminates..

  • PDF

Panel Flutter Analysis of Cross-Ply Composite Plate Utilizing Minimum Angle Tracking (최소각 추적 방식을 이용한 직교적층평판에 대한 플러터 해석)

  • 김기언;박흥석;김현순
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.271-278
    • /
    • 1999
  • An alternative panel flutter approach utilizing minimum angle is presented. The minimum angle is the lowest value among the angles between modes i and j at a certain pressure condition. This method utilizes eigenvectors rather than eigenvalues. Cross-ply composite plates are considered in this study. A remarkable result of this investigation is that the angle always dropped gradually to zero for all presented examples

  • PDF

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF

Development and Assessment of Higher Order Zig-zag Theory for smart composite plates under mechanical, thermal, and electric loads (열-전기-기계 하중을 받는 스마트 복합재 평판의 고차 지그재그 유한요소의 개발 및 성능 평가)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.191-194
    • /
    • 2001
  • A partially coupled thermo-piezoelectric-mechanical triangular finite element model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied mechanical load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness. Nonconforming shape functions by Specht are employed in the transverse displacement variables. Numerical examples demonstrate the accuracy and efficiency of the proposed triangular plate element.

  • PDF