• Title/Summary/Keyword: 복합시트

Search Result 142, Processing Time 0.024 seconds

Effect of Structure on the Sound Absorption and Sound Transmission Loss of Composite Sheet (복합시트의 구조가 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.154-158
    • /
    • 2012
  • The effect of structure on the sound absorption and sound transmission loss of composite sheet was investigated. A sheet of polypropylene was bonded by hot press with nonwoven fabric sheets of polyethylene terephthalate on the top side and the back side. Absorption coefficient of composite sheet using nonwoven fabric with surface density of $0.64kg/m^2$ was 0.1-0.2. It is 100-400% improvement compare to that of polypropylene sheet. The transmission loss of composite sheet was increased with surface density of polypropylene board and introduction of hemisphere hole on the surface of sheet. Two types of composite sheet were made using flat sheet and sine wave shaped sheet and the effect of sheet structure on the transmission loss was investigated.

Effects of Sheet Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr/Polymer Composite Sheets (FeSiCr/폴리머 복합 시트의 전자파 흡수 특성에 미치는 시트 두께의 영향)

  • Noh, Tae-Hwan;Kim, Ju-Beom
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2010
  • This study examined the effects of sheet thickness on electromagnetic wave absorption characteristics and internal microstructure in 92.6%Fe-6.5%Si-0.9%Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band. The composite sheets with the thickness of 0.3, 0.4 and 0.5 mm were prepared by tape casting. A significant decrease in transmission parameter $S_{21}$ and a large increase in power loss were observed for the thick composite sheet in the frequency range of 1~5 GHz. However the permeability properties were not affected by thickness variation, while the imaginary part of complex permittivity increased with the increase of sheet thickness at 1~5 GHz. The enhanced electromagnetic wave absorption characteristics in the thicker composite sheets was attributed to the changed microstructure and the higher dielectric loss.

Study on the biodegradable PLA sheet with multiple functionalities (복합기능성 생분해 PLA 시트에 관한 연구)

  • Lee, KyuDong;Kim, JongKyun;Lee, KyuDeug;Zun, Hyungdo;Kim, ChiGon;Yoon, KyungBae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.341-346
    • /
    • 2019
  • The study aims to provide a study on the mixing ratios and manufacturing methods of biodegradable PLA sheets for mid - term introduction, A 3-layer process was introduced to produce a multifunctional multi-layer structure sheet having improved heat resistance, impact resistance and transparency while having anti-fogging functionality as a biodegradable PLA sheet used for the purpose of anti-fogging function. Inner layer, core layer and outer layer were mixed and extruded. The inner layer and core layer were studied for a biodegradable PLA multi-layer sheet structure having inner hardness and high heat resistance and outer layer for imparting antifogging function. By applying the results of this study, plastic PLA properties and heat-resistant temperature can be improved to replace and expand plastics.

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet (친환경 활성탄 복합시트의 유해물질 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

A Study on an Integrated Light Guide Plate (광학시트를 제거한 복합 도광판 설계 연구)

  • Lee, Yun-Mi;Lee, Jun-Ho;Jeon, Eun-Chae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • An integrated light guide plate (LGP) was designed for liquid crystal displays (LCD) without using prism and diffuser sheets. The integrated LGP is textured with micro-patterns on both the top and bottom surfaces. The textures effectively substitute for a single prism-sheet and a diffuser sheet in LCD displays without decreasing the brightness and uniformity. A LCD display with our integrated light guide is simulated to give average luminance of 4560 cd/$m^2$, luminance uniformity of 83% horizontal viewing angle $60^{\circ}$ and vertical viewing angle $56^{\circ}$. Therefore an ultra thin (slim) back light unit can be constructed with fewer optical sheets, which reduces the manufacturing cost and so improves price competitiveness.

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Test and Field Application Analysis for Root Barrier using Aluminum Film Adhered to PVC and Waterproofing using E.P Sheet with Asphalt Membrane for Green Roof System (PVC 및 알루미늄을 진공 접착한 방근시트와 E.P시트 및 도막방수층을 부분 절연한 방수/방근 복합공법의 옥상녹화 적용성 평가에 관한 실험적 연구)

  • Oh, Sang-Keun;Kwon, Si-Won;Park, Jin-Sang;Park, Sang-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • The introduction of materials and methods of construction which are appropriated to property of green roofs could be a decisive factor in a long-range durability and economical maintenance cost, moreover, it support to variety construction system and organization. In this paper I focused to assure the basic system for waterproofing materials and root barrier apply to green roof as searching the application of field condition. And I suggest proper waterproofing and root barrier as considering the mutual connection and plant growth. and it can be a standard model to adopt to domestic green roof system.

  • PDF

Development of embedded type antenna structure with NFC and WPC complex function (NFC 와 WPC 복합기능의 삽입형 안테나 복합체 개발)

  • Park, Rog-gook;Lee, Deok-soo;Jang, Jeong-sun
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.59-68
    • /
    • 2018
  • The objective of this study is to develop an embedded antenna structure with NFC and WPC composite functions. By selecting stable materials, the optimal component ratio of the polymer sheet was determined. The low cost embedded winding method compared to the existing FPCB was devised. During the winding process, characterization and process technology were developed. We also fabricated a ferrite mold to process the WPC grooves and developed the process technology for optimizing the WPC antenna. The following conclusions were obtained. (1) Optimum composition ratio was derived as Fe 87.5%, Si 7%, Al 5.5% and selected as the final material. (2) Optimal sheet conditions were derived from the experimental evaluation method and the experimental design method through the combination test of the optimized sheet and the conventional mass production FPCB. (3) According to coil diameter and inner diameter, Q value fluctuation, resistance value and efficiency fluctuation are obtained. Therefore, the most suitable coil condition is selected and Rx matching is performed. (4) The EMV load modulation test and the cognitive distance test of the polymer sheet and the ferrite sheet showed that the recognition distance of the polymer sheet at 1k and 4K was 32-33 mm and the recognition distance of the ferrite sheet at the same condition was 30-31 mm.

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.