Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.4.487

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material  

Lee, Tae Heon (Department of Chemical Engineering, Chungbuk National University)
Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
Publication Information
Korean Chemical Engineering Research / v.59, no.4, 2021 , pp. 487-492 More about this Journal
Abstract
In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.
Keywords
Silicon sheets; Pitch; Graphite; Anode; Lithium ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Meng, X., Huo, H., Cui, Z., Guo, X. and Dong, S., "Influences of Oxygen Content on the Elctrochemical Performance of a-SiOx Thin-film Anodes," Electrochim. Acta, 283, 183-189(2018).   DOI
2 Jung, M., Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chem. Eng. Res., 54(1) 16-21(2016).   DOI
3 Lee, S. H. and Lee, J. D., "Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group," Korean Chem. Eng. Res., 57(1), 118-123(2019).
4 Yoshio, M., Wang, H. and Fukuda, K., "Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material," Angew. Chem. Int. Ed., 42, 4203-4206(2003).   DOI
5 Kim, J. S., Pflecging, W., Kohler, R., Seifert, H. J., Kim, T. Y., Byun, D. J., Jung, H. G., Choi, W. C. and Lee, J. K., "Three-demensional Silicon/Carbon Core-shell Electrode as An Anode Material for Lithium-ion Batteries," J. Power Sources, 279, 13-20(2015).   DOI
6 Bao, Q., Huang, Y. H., Lan, C. K., Chen, B. H. and Duh, J. G., "Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes," Electrochim. Acta, 173, 82-90(2015).   DOI
7 Yang, Y., Wang, Z., Yan, G., Guo, H., Wang, J., Li, X., Zhou, Y. and Zhou, R., "Pitch Carbon and LiF co-modified Si-based Anode Material for Lithium Ion Batteries," Ceram. Int., 43, 8590-8595 (2017).   DOI
8 Lee, J. H. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017).   DOI
9 Park, J. M., Cho, J. H., Ha, J. H., Kim, H. S., Kim, S. W. Lee, J., Chung, K. Y., Cho, B. W. and Choi, H. J., "Reversible Crystalline-amorphous Phase Ransformation in Si Nanoseets with Lithi-/delithiation," Nanotechnology, 28, 255401-255408(2017).   DOI
10 Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithium-ion Batteries," J. Alloys Compd., 530, 30-35(2012).   DOI
11 Liu, J. and Liu, X. W., "Two-Dimensional Nanoarchitectures for Lithium Storage," Adv. Mater., 24, 4097-4111(2012).   DOI
12 Xie, J., Tong, L., Su, L., Xu, Y., Wang, L. and Wang, Y., "Coreshell Yolk-shell Si@C@Void@C Nanohybrids as Advanced Lithium Ion Battery Anodes with Good Electronic Conductivity and Corrosion Resistance," J. Power Sources, 342, 529(2017).   DOI
13 Dou, F., Shi, L., Chen, G. and Zhang, D., "Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries," Electrochem. Energy Reviews, 2, 149-198(2019).   DOI
14 Chen, S., Chen, Z., Xu, X., Cao, C., Xia, M. and Luo, Y., "Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode," Small, 14(12), 1703361(2018).   DOI
15 Suresh, S., Wu, Z. P., Batrolucci, S. F., Basu, S., Mukherjee, R., Gupta, T., Hundekar, P., Shi, Y., Lu, T. M. and Koratkar, N., "Protecting Silicon Film Anode in Lithium-Ion batteries Using as Atomically Thin Graphene Drape," ACS Nano, 11, 5051-5061 (2017).   DOI
16 Han, U. J., Hwang, J. U., Kim, K. S., Kim, J. H., Lee, J. D. and Im, J. S., "Optimization of the Preparation Condition for Pitch Based Anode to Enhance the Electrochemical Properties of LIBs," J. Ind. Eng. Chem., 73, 241-247(2019).   DOI
17 Kim, W. S., Hwa, Y., Shin, J. H., Ynag, M., Sohn, H. J. and Hong, S. H., "Scalable Synthesis of Silicon Nanosheets from Sand as an Anode for Li-ion Batteries," Nanoscale, 6, 4297-4302 (2014).   DOI
18 Lee, S. H. and Lee, J. D., "Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite," Korean Chem. Eng. Res., 85(1), 142-149(2020).
19 Jo, Y. J. and Lee, J. D., "Electrochemical Charateristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent," Korean Chem. Eng. Res., 57(1), 5-10(2019).
20 Li, M., Hou, X., Fu, L., Wang, S., Hu, X., Qin, H., Wu, Y., Ru, Q., Liu, X. and Hu, S., "Mass-Producible Method for Preparation of a Carbon-Coated Graphite@Plasma Nano-Silicon@Carbon Composite with Enhanced performance as Lithium ion Battery Anode," Electrochim. Acta, 249, 113-121(2017).   DOI