• Title/Summary/Keyword: 복합소음

Search Result 378, Processing Time 0.022 seconds

Characteristics of Hybrid Optical Pickup Actuator at High Temperature (하이브리드형 광픽업 액추에이터의 고온특성)

  • Lee, Jin-Won;Kim, Kwang;Cheong, Young-Min;Kim, Dae-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1010-1014
    • /
    • 2002
  • A new type actuator has been designed and investigated to overcome thermal problems in slim optical disc drive which is adopted in mobile storage devices. Recently, in optical storage device technical trends, the size of optical disc drives is slimmer to adopt notebook computer and the spindle rotate velocity is faster to achieve high transfer rate and the power of actuator is higher to perform tilting, etc. However, these trends of optical disc drives tend to raise the environment temperature of drives, actuator power and parts temperature. Moreover, it is more difficult to remove the heat inside a drive and the temperature of an actuator increases and drive slims. As a result, increase of surface temperature of actuator body caused that second resonance of an actuator moves down to a lower frequency band and the performance of optical parts also deteriorates. Especially objective lens, coil and magnet of the actuator parts are easily damaged. To manage these thermal problems, in this paper an actuator with a hybrid blade, which is composed of vectra which has low thermal conductivity and magnesium which has high thermal conductivity, has been suggested and verified. Despite the high temperature environment, the proposed actuator showed good dynamic performance.

  • PDF

Dynamic model updating of the laminated composite plate using natural frequencies measured from modal test (고유진동수의 실험값을 사용한 복합재 적층판의 동적 모델링 개선)

  • 홍단비;유정규;박성호;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.340-346
    • /
    • 1998
  • In order to improve the prediction of dynamic behavior in structures, several lower vibration modes from FFT analysis through experiments are used to update the mechanical properties followed by the updated frequencies from numerical analysis. Performance index consists of the sum of error norms between the chosen frequencies and corresponding frequencies from numerical analysis. As an updating process of the natural frequencies, the optimization algorithm based on conjugate gradient method is adopted. The gradient of performance index is calculated using the sensitivity of selected eigenvalues with respect to each design parameter. The mechanical properties of lamina, E$\_$l/, E$\_$2/, .nu.$\_$12/ and G$\_$12/, are design parameters for the updating process. The proposed method is applied to predict the dynamic behavior of composite laminated plates of [0]$\_$8T/ and [.+-.45]$\_$2S/ separately or interchangeably. Also, the mixed case for [0]$\_$8T/ and [.+-.45]$\_$2S/ is exarm'ned to check the possibility for the improved prediction generally. The good agreement is obtained between the measured frequencies and the numerical ones. Based on the results for all the cases studied, the proposed approach has a clear potential in characterizing the mechanical properties of composite lamina.

  • PDF

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계및 해석)

  • 최상규;김영철;경진호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 1998
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analysis and prediction of its dynamic behavior to secure the operating reliability. Rotordynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness if 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favirable for smooth operation of the system around the 2nd critical speed.

  • PDF

Dynamic Responses on Semi-Infinite Space Due to Transient Line Source in Orthotropic Media (선형하중에 의한 직교이방성 매체의 반구계에서 동적 응답 특성)

    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.974-980
    • /
    • 1998
  • The analysis of dynamic responses are carried out on several orthotropic systems due to transient line source. These include infinite and semi-infinite spaces. The media possess orthotropic or higher symmetry. The lode is in the form of a normal stress acting with parallel to symmetry axis on the plane of symmetry within the materials. The results are first derived for responses of infinite media due to a harmonic line source. Subsequently the results for semi-infinite are derived by using superposition of the solution in the infinite medium together with a scattered solution from the boundaries. The sum of both solutions has to satisfy stress free boundary conditions thereby leading to the complete solutions. Explicit splutions for the displacements due to transient line loads are then obtaind by using Cargniard-DeHoop contour.

  • PDF

Detection of Signal Frequency Lines for Acoustic Target using Autoassociative Momory Neural Network (자동 연상 기억장치 신경망을 이용한 음향 표적의 신호 주파수선 탐지)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 1996
  • Signal frequency lines generated from the acoustic targets are of particular importance for target detection and classification in passive sonar systems. The underwater noise consists of a mixture of ambient noise and radiated noise of targets. Detction of exact signal frequency lines depends on signal detection threshold and variation of ambient noise. In this paper, a detection method of signal frequency lines for acoustic targets using autoassociative memory (ASM) neural network, which is not sensitive to variation of signal detection threshold and ambient noise, is proposed. It is confirmed by simulation and application of real acoustic targets that the proposed method shows good performance for detection of signal frequency lines.

  • PDF

Bending-Torsional Vibration Characteristics of Large Structures Influenced by Coupling Effects (연성효과에 의한 대형 구조물의 굽힘-비틀림 진동특성)

  • 송창용;손충열;송재영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.208-216
    • /
    • 1995
  • 대형선박, 항공기, 초고층 건축물 등은 얇은 박판 형태의 보로 이상화하여 구조 및 진동해석을 수행할 수 있다. 이러한 형태로 이상화한 구조물은 비틀림 강도면에서 매우 취약함을 보이고, 굽힘-비틀림 진동은 단면형상에 따라 연성도가 심화된다. 상하 굽힘 진동은 탄성거동 영역에서 도심과 전단중심이 일치하는 대칭 진동(Symmetric vibration) 현상을 보인다. 그러나, 수평 굽힘 진동은 도심과 전단중심의 차이가 커질수록 즉, 연성도가 높아질수록 비틀림 진동과 복합되어 복잡한 비대칭 진동(Antisymmetric vibration) 현상을 나타낸다. 본 논문에서는 연성효과에 의한 수평 굽힘 진동과 비틀림 진동 현상에 대한 연구를 수행하였고, 진동계산을 위해서 전달행렬법(Transfer Matrix Method)을 사용하였다. 수치계산은 첫번째로, 도심과 전단중심의 차이가 매우 작아 연성도를 무시할 수 있을 정도의 구조물에 대해서 일반적인 수평 굽힘 진동 현상과 비틀림 진동 현상을 연구하였다. 두번째로, 연성도가 매우 심할 경우에 굽힘-비틀림 연성 진동 현상을 Timoshenko 보의 이론과 Vlasov 보의이로네 따라 각각 계산을 수행하였다. 마지막으로, 첫번째와 두번째 구조를 결합한 경우에 대해서 굽힘-비틀림 연성 진동 현상을 연구하였다. 이 경우에 두 구조물의 결합부에서 비틀림 강성과 Warping 강성의 심한 변화로 인한 불연속 경계면이 발생하게 되고 이때의 진동해석을 위해서 보 이론에 기초를 두고 상당히 높은 정확도를 제공하는 Haslum[2] 등과 Pedersen[3]이 제시한 이론을 이용하였다.

  • PDF

A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping (능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구)

  • 김대원;배준영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

Estimation of Sound Pressure from Vibration Signals on a Flat Plate and Experiment (진동 신호를 이용한 평판의 음압 분포 예측)

  • Kim, Kwan-Ju;Choi, Sung-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.340-345
    • /
    • 2000
  • 진동하는 구조물의 음향 방사 예측에는 키르히호프-헬름홀쯔 적분 방정식에 근본을 둔 경계 요소 해석이 널리 사용된다. 이 경계 요소 해석은 익히 알고 있듯이 구조물의 동적 거동이 정량적으로 표현될 수 있는 경우는 매우 높은 정확도의 예측 결과를 제공한다. 그러나 실제 현상에서 접할 수 있는 복잡한 구조물의 음향 방사 예측에는 많은 변수들로 인해 예측의 정확도가 감소됨은 확실하다. 다른 방법으로는 실험을 통한 임의의 음장 예측 방법인 근음장 음향 홀로그래피(nearfield acoustical holography) 방법을 들 수 있다. 이 방법은 실제로 발생되는 음향 방사로부터 마이크로폰을 이용하여 홀로그램면의 음압 또는 속도를 측정하고 키르히호프-헬름홀쯔 적분 방정식에 적용하여 임의의 홀로그램면에 투사(mapping)시켜 음장을 예측하는 방법이다. 근음장 음향 홀로그래피는 탁월한 정확성을 갖고 있으나, 측정의 복잡성과 홀로그램면을 형성하기 위한 많은 이산점(절점)의 필요성 등의 단점을 갖고 있다. 본 논문에서는 또 다른 음장 예측 방법인 실험의 장점과 유한 요소 해석의 장정을 복합시킨 모드 확장 방법(modal expansion method)을 사용하여 단순 구조물인 평판의 진동에 의한 음장을 예측해 보았다. 모드 확장 방법은 구조물의 동적 거동은 모드의 선형 조합으로 표현될 수 있다는 것에 그 원리를 둔다. 본 논문은 단순 평판을 대상으로 유한 요소 해석으로 구한 모드 정보와 실험에 의해 얻은 입의 가진 주파수에 대한 진동 표면의 속도 분포를 조합하여 속도 경계 조건을 구성, 경계 요소 해석으로 음장 예측을 수행하였으며 모드 확장 방법을 사용함에 있어 고려해야할 몇 가지 사항에 대해 다루었다.

  • PDF