• Title/Summary/Keyword: 복합구조시스템

Search Result 921, Processing Time 0.027 seconds

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

A Study on the Modeling for Boom Structural Behaviors of the Triaxial Woven Fabric Composite (3-방향 직물 복합재료 모델링 및 붐 구조물의 거동 연구)

  • Seon-Woo, Byun;Ji-Yoon, Yang;Soo-Yong, Lee;Jin-Ho, Roh
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.99-105
    • /
    • 2022
  • This paper studied the mechanical characteristics of boom structures by verifying the modeling method of representing unit cells of triaxial woven fabric (TWF) composites. The modeling of the representative unit cell obtained the ABD matrix by analysing the behaviour of tensile, shear, bending, and torsion using the periodic boundary conditions for the beam element. This study aimed to validate the ABD matrix by comparing the tensile analysis output from a finite element program with the experimental results from an MTS 810 machine. Additionally, the mechanical characteristics of a TWF composite boom structure were determined through bending analysis and experiments. The findings of this research are expected to be beneficial for developing structures using TWF composites.

Study of Failure Mode and Static Behavior of Lightweight FRP Truss Bridge Deck System (복합재료 트러스 교량시스템의 정적거동 및 파괴모드에 관한 해석적 연구)

  • Jung, Woo-Young;Lee, Hyung-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.511-520
    • /
    • 2007
  • There is a concern with worldwide deterioration of highway bridges, particularly reinforced concrete. The advantages of fibre reinforced plastic(FRP) composites over conventional materials motivate their use in highway bridges for replacement of structures. Recently, an FRP deck has been installed on a state highway, located in New York State, as an experimental project. In this paper, a systematic approach for analysis of this FRP deck bridge is presented. Multi-step linear numerical analyses have been performed using the finite element method to study the structural behavior and the possible failure mechanism of the FRP deck-superstructure system. Deck's self-weight and ply orientations at the interface between steel girders and FRP deck are considered in this study. From this research, the results of the numerical analyses were corroborated with field test results. Analytical results reveal several potential failure mechanism for the FRP deck and truss bridge system. The results presented in this study may be used to propose engineering design guideline for new and replacement FRP bridge deck structure.

Precision of Iterative Learning Control for the Multiple Dynamic Subsystems (복합구조물의 선형반복학습제어 정밀도 연구)

  • Lee, Soo-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.131-142
    • /
    • 2001
  • 다양한 산업체에서 반복적인 특정업무를 수행하는 경우가 흔히 발생한다. 반복되는 오차의 경험치를 근거로 주어진 작업을 추진하는 과정에서 이들 업무의 정밀도제고를 추구함으로써 갖는 성능개선은 사업장의 품질관리와 직결된다. 학습제어의 본래 적용동기는 생산조립라인에 투입되어 반복적인 일을 수행하는 산업로봇의 정밀도 제고이다. 본 논문에서 분산이산시형시스템에서 출발하였으며, 이를 산업용로봇에 적용하기 위하여 수학적으로 모델링한 모의실험을 통하여 알고리즘의 안정성과 반복오차를 줄여가는 과정을 보여 주었다. 입출력정보가 상호간섭 하는 산업용로봇과 같은 복합구조물에서도 모든 시스템(링크)의 정밀도를 만족함을 보여 줌으로써 복합구조물에서 선형반복학습제어의 안정성을 증명하였다.

  • PDF

Design of Object-Oriented Form System (객체지향 폼 시스템(Form System)의 설계)

  • Eum, Doo-Hun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.50-62
    • /
    • 1994
  • The majority of database users interact with database systems by manipulating forms. This paper discusses the fundamentals underlying forms and considers low these mechanisms affect the behavior of forms We then review the forms supported by commercial products. None of the packages reviewed provide all of the features that make up an ideal form. We propose a new design that overcomes many of the limitations observed in the packages currently available. The new system is event- driven, object-oriented, supports a hierachy of composite blocks, and is primarily modeless. Forms are defined as top-level blocks and blocks can be either atomic or composite structures with methods directly included in their definition. Messages are passed among form objects. Defining forms with the proposed system is simple because from definitions are similar to type declarations in Pascal.

  • PDF

Vibration Control of the Continuous System Under White Noise Disturbance (백색잡음가진을 받는 연속체의 진동제어)

  • Paik, Jong-Han;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.116-120
    • /
    • 1994
  • 최근 항공우주 및 생산자동화 분야의 급격한 발달에 따라 정밀도와 효율성을 향상시키기 위해 저중량, 고강도 구조물이 요구된다. 그러나 경량화 추세로 인해 수반되는 구조물의 유연성 증가로 외력에 대한 구조응답의 진폭이 커지고 구조물의 피로 수명이 단축되어 매우 위험한 상황에 이를 수 있다. 이런 바람직하지 않은 진동현상을 제어하기 위해 여러 제어이론을 응용한 진동억제시스템의 연구가 활발하며, 신소재인 압전재료의 개발로 새로운 방향이 제시되고 있다. 압전재료는 유연한 구조물에 부착되어 압전재료의 수축, 팽창 운동에 의해 발생된 에너지를 부착된 구조물에서의 제어력으로 사용되어, 진동 혹은 자세 및 형상 제어에 활용되고 있다. 압전재료에 대한 연구로는 Crawley, de Luis3가 보의 표면 혹은 내부에 압전세라믹을 부착하여 액튜에이터로 사용하는 경우 집중모멘트를 가하는 역할을 함을 밝혔고, Hanagud, obal은 압전재료를 센서와 액튜에이터로 사용해 복합재료 보에 대한 최적 진동제어 알고리즘을 개발, 그 성능에 대한 효과를 조사하였고 임의의 위치에 부착된 센서 및 액튜에이터를 고려한 복합재료 보의 운동방정식을 유한요소법을 이용 유도하였으며 변위율 피드백(rate feedback)과 모달피드백(modal feedback) 제어기를 적용하여 진동제어 효과를 고찰하였다. 그리고 Tomas, James, Hubbard는 압전필름을 액튜에이터로 사용해 복합재료 보에 Liapunov 제어기와 변위율 피드백 제어기를 사용하여 능동감쇠기를 설계하였고, Lee, Chaing, Sullivan은 압전필름을 센서와 액튜에이터로 사용해 평판에 변위율 피드백 제어기를 적용한 능동감쇠기를 설계하고 실험적으로 수행하였다. Base가 백색잡음가진을 지속적으로 받을 때 보끝의 움직임이 최소가 되도록 제어하고자 연구를 수행 중인 바 그 결과로소 본 논문에서는 적용시켰고 F-P-K 방정식을 이용해 확률영역으로 변환하여 LQR 제어기와 pole allocation 제어기를 시스템에 적용시켜 우수한 특성을 갖음을 제어 시뮬레이션의 결과를 통해 입증하였다.

  • PDF

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구)

  • Jang, Byeong-Wook;Park, Sang-Oh;Lee, Yeon-Gwan;Kim, Chun-Gon;Park, Chan-Yik;Lee, Bong-Wan
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Low-velocity impact can cause various damages which are mostly hidden inside the laminates or occur in the opposite side. Thus, these damages cannot be easily detected by visual inspection or conventional NDT systems. And if they occurred between the scheduled NDT periods, the possibilities of extensive damages or structural failure can be higher. Due to these reasons, the built-in NDT systems such as real-time impact monitoring system are required in the near future. In this paper, we studied the impact monitoring system consist of impact location detection and damage assessment techniques for composite flat and stiffened panel. In order to acquire the impact-induced acoustic signals, four multiplexed FBG sensors and high-speed FBG interrogator were used. And for development of the impact and damage occurrence detections, the neural networks and wavelet transforms were adopted. Finally, these algorithms were embodied using MATLAB and LabVIEW software for the user-friendly interface.

Development of Material Qualification Method for LCM(Liquid Composite Molding) Process (항공기용 액상성형공정(Liquid Composite Molding) 복합재료 인증방안 개발)

  • Sung-In Cho
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Liquid Composite Molding (LCM), an Out of Autoclave (OoA) composite manufacturing process, has big advantages when making large and complex structures of airplanes. Since the importance of LCM process is increasing, FAA has suggested recommended guidance and criteria for the development of material and process specifications for LCM materials and process. The importance of LCM process is also raised by domestic composite material suppliers and OEM. This study suggested structures of material specifications and process specification of LCM materials. Material qualification method for LCM process and material was also developed in this study.