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Precision of Iterative Learning Control for the Multiple Dynamic Subsystems
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1. Intreduction knowledge of the system being controiled, and base their
adjustments to the command on previous experience
When a control system is required to execute the performing the command without relying on an a priori
same command repeatedly, the error in following the model of the system dynamics. There has been
command will be repeated (except for random considerable research activity in this field in the last few
disturbances). It seems a bit primitive to produce the years, some examples of which are given in the
same errors every time the command is given. The new references™ ",
field of learning control refers to controllers that can The question arises, what happens if a separate
learn from previous experience executing a command in learning controller is used with each of the separate
order to improve their performance. They learn what feedback controllers of the robot arm. Such an
command input should be given to the system in order to application represents use of a decentralized learning
have the response be the desired response. They control. A serious issue is whether the dynamic
eliminate the deterministic errors of the control system in interactions in the dynamics of the systems governed by
executing the command, and they eliminate errors due to the separate learning controllers could cause the learning
disturbances that repeat each time the command is given. processes to fail to converge. In a previous paper™, this
Learning controllers aim to accomplish this with minimal question was addressed for the most basic form of
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learning control that is based on use of integral control
There
control

like concepts applied in the repetition domain.

are various more sophisticated learning
approaches including one that makes use of indirect
adaptive control ideas applied to learning in the

repetition domain™.

This approach has an important
advantage over the simpler learning control law related
to integral control concepts, because it can guarantee
convergence of the learning process to produce zero
tracking error. In a previous work!™, the authors
presented a theory of indirect learning control based on
use of indirect adaptive control concepts employing
1M In Ref. 19
they develop the indirect learning control algorithms, and
study the use of such controllers in decentralized systems.
It is the purpose of this paper to develop modified forms
of the indirect decentralized learning control law in order

simultaneous identification and contro

to improve the control properties more. Some numerical
results verify the theory in polar robot.

2. Mathematical Formulation

We first consider a time-varying or time-invariant
discrete time system of the following form

x, (k+D)= A, (k)x, (k) + Zs: A,)_ij (k)x"'j(k)
Z

+B,,(k+ v, (k)+w,, (k)
yilky=C, (k)x, (k) ; i=123,s

1)

This represents s subsystems. The input and output
matrices for the different subsystems are uncoupled, but
there is dynamic coupling between the subsystems
represented by the coupling matrices A, The control
input to subsystem i is v, , its state is x,; and its
measured output is y,. The w, , Tepresents disturbances
that repeat with each repetition of the task. The subscript
o refers to the open loop system model. The paper will
later consider differential equation models with the same
structure.

Now consider that each subsystem has its own
decentralized feedback controller with feedback of only

that subsystem's measured output. These controllers
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could be simple proportional controilers with rate
feedback which is a common approach in robotics, or

they can be more complex controllers including
controller dynamics and a controller state variable. We
include all such possibilities in the following
formulation:

Vi (k) = v, (k) +u, (k)

Vg () = Crp ()X, () + K, ()L, (k) = ¥} (K]

Xpp (k+1) = Apg (k)X g (K) + By (k) y; (k) - y; (k)]

@

Here, the input v, is the sum of the feedback
control v, ., and the learning control signal u,. The

desired output of the system is

yi(k); k=123, p ®
and it is the task of the learning control signal
u, (k) ; k=012,---,p-1 )

to converge on an altered input command to the feedback
system that causes the actual measurements y, (k) to
correspond with these desired outputs. When dynamic
controllers are used, the feedback control signal for each
system i is determined as the output of this controller's
dynamic state variable equation in equation (2). When
output feedback is employed, then the dimension of the
controller state reduces to zero in equations (2), leaving
only the second term on the right in the middle equation.

The system of importance to the learning controller
relates the learning control signal u, to the measured
system response. This is accomplished by combining
equations (1) and (2) to form the closed loop system
dynamic equations

x,(k +1)= A, (k)x, (k) + iA,.j(k)xj(k) + B,(k + Du, (k) + w,(k)
)

i

(k) =Clkyx, (k) 5 i=123,s

The closed loop system matrices in this equation are
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A (k){Au,ﬁ(k)*‘Bo,i(k)Ki(k)Co,i(k) Bo,i(k)CFB.i(k)] (6)
! BFB,i(k)Cg,i(k) AFB,r'i(k)

Ak 0
A,,(k):[ ‘“6( ) 0}

Bk =[BT,k of
cw=lc,.w o

and the state vector for system i has been angmented to
include the controller state as

%) =[x, k)« o %

The exogenous termw, is still an input that repeats
every time the command is given to the system, but now
it contains the repetitive command as well as the
repetitive disturbance

w

W, (k) = 20 (k)= B, (K)K; (k) y; (k) ®)

- BFB,i (k)}’: (k)

The s coupled subsystems of equation (5) can be written
as one large state equation in an obvious manner

x(k +1) = A(k)x(k) + B(k)u(k) + w(k)
y(k) = Clkyx(k) ®

Let the difference operator § operating on any
quantity represent the value of that quantity at repetition
r minus the value at repetition r -1. Since w(k)
repeats each repetition, and since in the learning control
problem it is assumed that the initial condition is the
same every repetition, we can rewrite (9) as

5,y=Po,u (10)
y=D"® ¥y ..y I
u=[u"©) 'O ..u"(p-DY
where
ANHB0) 0 0

P=  GOADBO) apsy 0 (11
UPELAKDBO) APTEAWBD - CpBp-1)

The product notation represents a matrix product
going from larger arguments on the left to smaller

arguments on the right.
how the
subsystems appears in these equations. By reordering the

Now consider coupling between
elements of the matrices in (10) to separate elements into
those that apply to each subsystem and those that couple
the subsystems one can write (10) in the form

6,y =Pb.u + Z Pio,u, (12)
j=1

GOt
j#l

Here the P, and P, are lower block triangular
matrices for the ith subsystem. The first represents the
pulse responses of the ith subsystem to its own inputs
and the second gives the pulse responses of the ith
system to inputs in other subsystems. This equation
serves as the basic equation for the development of all of
our decentralized learning control strategies.

For purposes of illustration, suppose that the original
system was time invariant, contained two subsystems
(s=2), and that the desired trajectory is three time steps
long (p=3). Then equation (12) for system one is

3.y, C,B, 0 0 T8.4,0)]
8y |= CA,B, CB 0 |suM| (13

533 [C(A +A,A)DB CAB CB | 5u (2]

0 0 0]6u,0]

+ CA,B, 0 0| 6,u,()

C(A A, +AA)B, CALB, 0] 6.u,(2)]

Note that due to causality, the p , and P, matrices
are lower block triangular, and that in addition the
matrices coupling the subsystems, P, have zero
diagonal block elements.

We will assume that the number of output variables at
each time step is the same as the number of input
variables. Hence, the product C(k)B(k —1) is square,
and we furthermore require that it be full rank. This is
required for the existence of a solution. If there are
more outputs than inputs in the original description of the
problem, one must limit the number of output variables
which one wishes to force to have zero tracking error.
In this case, one has the option of choosing a different set
of outputs each time step so that zero tracking error is



A A1sH A3 E

obtained for all desired output variables at some but not
at every time step. Note that making such changes from
one time step to the next will create a time-varying
system from a time-invariant one.

3. The Decentralized Application of Indirect
Learning Control

The indirect learning control of reference™ and the

indirect decentralized learning control''”

are designed to
apply to time varying linear systems, and to apply to time
invariant linear systems as a degenerate case.
(4) can be thought of as a system representation in

modern control form with the state vector being the

Equation

history of the outputs for a repetition, with the identity
matrix as the system matrix, and with the changes in the
inputs from one repetition to the next as the control
variables. Reference!”! shows how to apply indirect
adaptive control in a centralized manner to such a
modern control representation operating in the repetition

In Reference!'”

domain. , various possible ways were
considered to apply indirect adaptive control ideas in a
decentralized manner, and they approved the stability
and the convergence to zero tracking error for each
subsystems of multiple subsystems. Here, the basic law
will be

decentralized learning control to the polar coordinate

introduced to apply the above indirect
robot.

Since system ¢ does not know what inputs are being
used in other systems, in order to allow each system to
accomplish its goal of learning, the first decentralized
learning process considered here requires that at each
repetition only one subsystem learns, and the remaining
subsystems keep their learning control signals frozen.
Hence, if at repetition r it is subsystem /'s turn to learn,
then equation (12) becomes

P6 (14)

6,y =FPd.u,

Such input-output pairs obtained each time it is i's turn
to learn, allow the decentralized learning controller for
system i to estimate the matrix p, call it P, Using

this estimated matrix, the learning control law generates
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the change &, u, required to make a change 5 y that
will cancel the error according to B

S, =Py -y ) as)

i

There are various choices for the estimation of this
the algorithm, the
orthogonalized projection algorithm, and the recursive

matrix, including projection

least squares algorithm. Ideally, each of these can be
computed in real time from one time step to the next, so
that at the end of a repetition the information is available
for immediate use whenever the next repetition starts.
An important freedom in the learning control problem is
that there is no requirement that the computation be
made in real time. There is no requirement that
learning take place at every repetition, so that one can
skip learning for a repetition while one waits for the
needed computation to be completed.

Note that one can make use of the lower block
triangular nature of the estimated matrix in order to
The

in

obtain the inverse in a recursive manner.

centralized indirect learning control results
Reference guarantee zero tracking error without any
requirement that the identified matrix ﬁﬁ , converges to
the true matrix. This result is analogc;us to standard
results in adaptive control theory. We will not address

such issues here. Instead we simply agree to introduce

5.u, (1)
produces a change in the leaning control input which is

an independent if at some repetition,
not independent of previous changes.

Here we consider the recursive least squares
algorithm because it is relatively insensitive to noise, and
because it can guarantee convergence in a finite number
of steps when the data is noise-free and independent.
The equations appropriate for (15) are given in
Reference® . Consider the computations made by the ith
subsystem, and for the sake of simplicity of notation, we
temporarily drop explicit indication of dependence on i
in the symbols used. Let ﬁ“ represent the column
vector which is the transpose of the /th row of 13" but
with the zero elements to the right of the block diagonal
deleted from the column vector. Let &'u represent
the quantity § y but with the elements deleted that are
multiplied by these zero elements in the product P.§ u,.
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And let 5: y represent the /th row of S y- Then the
recursive least squares update is B

L s Sly-('w' B (16)

Pl.r = E,r—l +M1,r—2§:ﬂ rz 1 ( T’ —) l"‘[‘

1+ (é‘r E) MI,I-ZSrE
M, ,0,u(5, Z)TMI r-2
M, =M, ,~— T ' >
' ' 1+ u)' M,, .0 u ;or2 2

The initial value pf, ~ is chosen as the identity
matrix of the same dimension as the 13, , corresponding
B,
the dimension of

Note that this matrix need only be updated when
increases when [ is increased, and
the same M,, can be used for all rows corresponding
to the same time step in the multiple output case.

The decentralized indirect learning control algorithm
based on the centralized indirect learning control
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algorithm of  Reference™ can be summarized as

follows. Only one subsystem learns during each
repetition, while the other subsystems keep their learning
control signals unaltered. As the repetitions progress,
each subsystem gets its opportunity to learn in an order
that is pre-chosen and known to each of the learning
controllers. Then at the repetition for which the ith
subsystem learns, the learning control law for subsystem
i is: equation (16), together with equation (15) with a
recursive computation of 13ii‘:, and together with the
requirement for independent’ changes of the learning
control signal for this subsystem. In a later subsection

we will study the convergence behavior of this

decentralized learning control scheme. We will also
develop a modified version of the algorithm requiring

less computation, and producing faster convergence.

4. Convergence of the Decentralized Indirect
Learning Control Algorithm

For convenience, consider the case of two subsystems,
=2 .

to more subsystems.

Later we will consider how the results generalize
Define the error of the ith
subsystem at repetition r as

&, =y =Y, an

=ir
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During repetition r, let it be subsystem 1's turn to learn
while subsystem 2 does not change its learning control

signal:
Ei,r+l = ”_l.i.r + 5r+1,. Ei
Al
S,u =Pu,ae, s)
5r£2 = O

Note that the repetition number used on the estimate
of the P matrix reflects the last repetition for which
new information was obtained for this subsystem. The
error propagation equations for this repetition are:

e, =lI- Pnﬁﬁ,lpz lei
(19)

p-1
€., =€, PR, 8,
Then at repetition r+1,
the situation is reversed and gives the following error
propagation

_ A-1 A-1 51
e =U-R B, e, +[RP, bR, e,
p-1
-B,P,, 8,

p-1 p-1
e =U-PyP,, e, . — PRy, €,.]

(20)

By construction, the estimate of P, must converge
Let
this identification has

to the true values when there is no noise in the data.
us suppose that at repetition -1
been achieved by both subsystems, but that the errors
e,, and ¢,  contain all nonzero components.
Then e, will be identically zero, as it will be at r+2,
r+4,... The error g,  will still have all nonzero
elements, but at r+1 , r+3 , r+5, ... it will have all zero
elements. Note that a product such as B, i’,;’,,z is
lower block triangular, and furthermore the diagonal
blocks are all zero. When two such products are
multiplied together, then the subdiagonal blocks become
zero as well. Hence, ¢, has one zero element
appearing according to equation (20), and of course

is identically zero. Now replace r by r+2 in (19)

€2,r41
and (20), and repeat.

The above reasoning establishes that once the pattern
has been set up, the number of nonzero elements of the
error that is not automatically zero at a given repetition,

increases by two every time the repetition number
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increases by two. Therefore, in a finite number of
repetitions the decentralized indirect learning controllers
converge to zero tracking error for the desired
trajectories of both subsystems.

If the learning control was accomplished in a
centralized manner, convergence in the absence of noise
is reached on or before the repetition for which the full P
matrix is identified. Here we have not identified the
whole P matrix, but rather P and P, only, and it is
necessary to add additional repetitions once these are
determined in order to account for the dynamic coupling
between the subsystems.

It is of interest to see how the convergence behavior is
affected by increasing the number of subsystems.
Suppose that there are three subsystems, and that the P,
have all converged to the correct values by repetition r.
Following the same reasoning as above, we find that at
repetition r, r+3, r+6, r+9, r+12, the error in underline
e, is identically zero, and the errors €, and [ have
a number of definitely zero elements given by 1,2; 3,3;
The

sequence is perhaps surprising, but one notes that as r

4.,5; 6,6; respectively. "irregularity" in this
increases by 6, the number of definitely zero elements
increases by three. This same property is observed for
the errors at times r+1, r+4, r+7, ..., and at times r+2,
r+5, r+8, ...

Theoretically, this control law starts from the
deterministic system with periodic disturbances. The
periodic disturbaces become deleted mathematically and
physically in this learning control problem. And, noise

problem will be solved in the next paper.

5. Improved Decentralized Learning Control
Algorithms

The approach taken to obtain the above algorithms is
the application of indirect adaptive control ideas to the
system equations in the repetition domain. In order to
implement the decentralized versions for these indirect
learning control algorithms it was necessary to have the
In this

section we develop another approach with a different

subsystems cooperate in taking turns learning.

type of agreement between the learning controllers.

136

For simplicity, consider a system containing only two
subsystems, and refer to equation (13). During the first
run of the system, subsystem 1 applies ,  (which could
be zero) and observes response Yy’ while subsystem 2
applies y,  and observes Yyo! In the first repetition,
each subsystem can change its control at the first time

step, and observes

6y (D =CB6u,(0)
8,y,(1) = C,B,6.u,(0) 21

These equations are decoupled, so that each system
can learn without concern for disturbances from the
We
presume that the number of inputs and outputs of each

dynamic coupling with the other subsystem.

subsystem is known, so that the number of repetitions
needed for each subsystem to identify its C B, is known
in the deterministic case. One can start with an a priori
estimate of each, and use a recursive formulation to
update the estimate after each repetition.
repetitions, each controller uses its estimate E (C,B,) to

determine its control action for this time step in the next

During these

repetition according to

8,u,(0) = [E,(CB)I [y, )~ y,,,(D] 22
As before, if this learning control rule fails to give a
linearly independent change in the control, such a change
is substituted. If desired the learning control signals at
later time steps can be adjusted as well, according to any
desired rule, but any such adjustment has no influence on
the convergence of the method being discussed here.
Once enough repetitions have been made so that each
subsystem has obtained knowledge of its CB,, then
starting with the next repetition no change is made in the
leaning control signal for time step zero, and adjustments
are made for the learning control at time step 1.

According to (13)
0.y,(2) =CA,BS.u (0)+CBou(l)+CA,B,0u(0)
(23)

The agreement not to change the learning control
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signals at the zeroth time step, reduces this equation to

5.y,(2) = C,B,5.u,(1) (24)

Several situations can apply here. In the case of a
time-invariant system without noise in the measurements,
each subsystem has already determined the values in
CB,: and hence each subsystem knows how to get zero
tracking error for this time step in the next repetition.
When the measurements are noisy, this equation is one
more equation to use in a recursive least squares
approximation of CB -
system equations, the C.B, in (24) has different time
arguments than in (21), and repetitions must be allocated

In the case of time-varying

to accomplish this identification in the same manner as
was done for (21).

This wave of learning is continued until all time steps
have been treated. In the absence of noise in the
measurements, this learning control approach produces
zero tracking error in a finite number of repetitions
(provided the desired trajectory is feasible).

Note that by using this wave of learning, zero tracking
error is achieved without having identified all of the
This is
possible because the control law involved is a one-step
ahead control.

Note also that no penalty is paid for accomplishing the
Stated in

elements of the P or of the P, matrices.

learning control in a decentralized manner.
other terms:

Result: In a noise free environment, if the maximum
number of repetitions needed for any subsystem to
accomplish zero tracking error provided there were no
dynamic coupling between subsystems is R, then the
decentralized indirect learning control can accomplish
zero tracking error in this same number of repetitions.

This result follows from the fact that at each time step
of learning as the repetitions progress, each subsystem
can learn without disturbance from other subsystems.

The learning control law proposed here is a
decentralized version of a combination of learning
control laws suggested and studied in [5], one involving
learning in a wave and the other involving identification
of one Markov parameter. The number of repetitions

used here to obtain zero tracking error is related to the
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number of discrete time steps in the repetitive process,
and this can be a large number. It was shown in [5] that
if one accepts an asymptotic approach to zero tracking
error rather than insisting on zero error in a finite number
of repetitions, it is possible to set the learning control
gains so that essentially zero error is obtained in many
fewer repetitions. This result was for centralized
learning control, but it suggests that one might observe
faster convergence in the decentralized indirect learning
control if one uses a properly chosen learning gain ¢
in the control law used in future time steps in advance of
the wave of learning

§rui(k -N= ¢[E, (C;B, )]‘l[y," (k) - Yiri (k)] (25)
In the presence of noise, once the cooperative wave of
learning is completed (i.e. it has progressed from the first
time step to the last time step of the repetitive process),
one will not have zero tracking error. One must decide
what actions to take to continue learning once this
repetition is completed. One can of course repeat the
wave, using the new information gained to improve one's
estimates of the C.B, whether time-varying or time-
invariant. On the other hand, one can use the deadbeat
control law of the form of (22) for each time step, and
provided the estimates of C B, are sufficiently good
that the eigenvalues of
I-(CB)I[E.(CB)]" (26)
are inside the unmit circle, convergence is guaranteed.
Such a condition should surely be satistied. For the
purposes of the next section, we will assume that it is
this rule that is followed after the first wave is completed.

6. Numerical Examples

This paper presented the concept for application of
indirect learning control in a decentralized manner, and
showed that it can lead to guaranteed convergence to
zero tracking error.
number of choices for implementation.

The concept still leave us with a
We can have
each subsystem take turns learning, and we can choose
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how often they alternate. Or we can have the
subsystems learn simultaneously, but do so in a wave,
and in this case we can choose how fast to make the
wave progress. In the identification process, we also
have choices. One can use the recursive least squares
method as was suggested above, or one can simply solve
the simultaneous equations for the unknowns, which can
be more reasonable when the number of unknowns is
small, as is the case when learning in a wave. In this
section we examine these options by studying several

examples.

6.1. Dynamic Model for the polar coordinate
robot
The nonlinear equations for motion of the polar
coordinate robot in Fig. 8 are given as

(my +m )W) ~Imy p() + m, (p(t) + DI, (1) = F()

[y +my p(e)* +m, (p(e) + L)Y (2)
+20my p(1) +m, (p(t)+ D)]pO6,(H) = M, ()
27)

where p(r) is the radial extension of the prismatic joint
measured from the center of the support point to the
center of mass of the prismatic beam (without load), and
6,(t) is the angle of rotation of the beam about the
vertical axis. The beam mass is m, =39.28kg , its
half length is /=0.6, and its moment of inertia about
the vertical axis is I, =1.93kgm?. The mass of the
point mass load located at the end of the beam is
m, =10kg. The force and moments applied to each
joint are supplied by proportional plus derivative
feedback controllers given by

FO=K,[p(®) - p O+ K,[p(6) - 0" (O] +u,(t)
M, () =K,[0,(0-6; D]+ K [6,()-6; (O] +u,r) (28)

where, K. K,» K,» K, are the feedback gains with
values 98.6, 443.5, 450.9, 182.2 respectively, and u, ()
and u,(t) are the learning control signals.

The desired trajectory is again given by Fig. 7,
where the subsystem 1 graph is p"(¢) in meters, and the
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Fig. 1 Error histories for the linearized polar
coordinate robot using alternate learning after
initial identification of P, by each subsystem.

subsystem 2 graph is @*(r) in radians.
6.2. Subsystems Alternate
Complete Trajectory
Figure 1 presents results when this decentralized
learning process is used on the linearized model of the
polar coordinate robot example with 10 time steps during
the 1 second maneuver. In this figure and those that
follow,

Learning the

to control of radial
displacement, measured in meters, subsystem 2 controls
the rotation angle, given in radians. The repetition 1
corresponds to using the feedback controller alone, and
then repetitions 2 through 11 correspond to having
subsystem 1 doing the learning. Without noise this
number of repetitions is sufficient for system 1 to learn

subsystem 1 refers

all elements of P,. However, in this example we use



A .

o)

#7732

aL
(]

34 A 188 A3E

subsysten 1 subsystem 2

0.45

error histories

error histories

time (sec)

Fig. 2  Error histories for decentralized learning in
the linearized polar coordinate model using
alternate learning every repetition starting

with repetition 2.

the usual recursive least squares equation (16), which has
a 1 in the denominator that is introduced to avoid the
possibility of singularity. This means that the resulting
identification is not exact in the noise free case except
asymptotically. The initial condition for the recursive
least squares is an a priori estimate of P, that is in error
-- every element being 10% too high. The next two
parts of the figure present the corresponding repetitions
when subsystem 2 learns P, , repetitions 12 through 21.
Then the subsystems alternate learning every repetition,
with subsystem 1 learning in repetition 22. Both linear
plots and logarithmic plots are presented for these
repetitions. By the 28th repetition the error is zero to
the plotting accuracy of the linear plot. ’
Figure 2 simulates the same system, but the learning is
alternated between subsystems starting from the first
repetition, without separate repetitions allocated for each
system to learn its own P,. The first repetition
corresponds to feedback control only, and then in the
The theory
presented guarantees convergence for this case as well

first repetition subsystem 1 learns.
(in both cases a sufficiently small sample time must be
used). On the linear plots, essentially zero tracking
error is reached after 7 repetitions, which is much faster
This
difference would be even more extreme if there were
more time steps in the trajectory. We conclude that it is

than the 28th repetition in the previous case.

best to start alternating from the first repetition.
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6.3. Subsystems Learn Progressive Time-Steps
Simultaneously

In the decentralized learning method of the above
examples, each subsystem eventually needs to identify
all elements of its P, matrix. When the subsystems
learn simultaneously, one time step at a time, the
identification is limited to having each subsystem find
the instantaneous value of its own input-output matrix
product. Rather than use the recursive least squares
approach of (16), here we compute this product as
follows:

u,, (k)=u,,_ (k)+06,u.k)
where
S.u (k) =[E (C,(k +DB,(,D]"(y; k + D~ y,,_ (k+1))

29

The estimate E_ (C,(k+1)B,(k)) of C,(k+1)B,(k)
of subsystem i is chosen as the latest value according to

5ryi(k+1)

E_(C(k+1)B;(k)) = 51000

(30)

Care must be taken to avoid singularity problems in
performing this division, when the learning control signal
approaches convergence.' We will vary the number of
If the
system were. truly a linear time-varying discrete time

repetitions used for learning at each time step.

system with no coupling between subsystems in the input
and output matrices, one would prefer to average the set
of numbers obtained from (30) for this time step, rather
than use the latest value, in order to average the effects of
noise in the data. However, noise may not be the issue.
In
the process of discretizing the linearized differential
the
subsystems, which for small sample times is small but

Other considerations suggest using the latest value.

equations, coupling was introduced between

not zero. Also, the actual system is nonlinear, and the
linearized differential equation model considered here to
model the system is linearized about the desired
trajectory. Hence, it is only as the system approaches
the desired that

trajectory the estimate of the
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Fig. 3  Error histories for learning in a wave in the

linearized polar coordinate model,
progressing one time step every two
repetitions, and performing two waves of
learning.

C,(k +1)B,(k) product approaches the true value.

Figure 3 presents results of learning in the same
linearized polar coordinate model as above, with the
same sample time. The first repetition is with feedback
control only, and then the wave of learning starts, using
After the wave

finishes the final time step at repetition 21, a second

two repetitions for each time step.

wave of learning is performed for repetitions 22 through
41.
from the time varying difference equation.

The computations use noise free data computed
Due to the
effects mentioned above, the error at the end of the first
wave is not zero, although the error is much improved
over feedback alone. During the second wave, the error
behind the wave is made very small, although the error in
front of the wave is somewhat accentuated temporarily
during the learning process. Figure 4 shows the
corresponding results when four repetitions are used at
each time step, and only one wave of learning is used, for
the same total of 41 repetitions.

through 21 in Fig. 3, one has somewhat better and more

During repetitions 1

uniform error histories than in Fig. 4, but during the
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Fig. 4  Error histories for learning in a wave,

progressing one time step every four
repetitions, and performing one wave of
learning.

second wave of learning for repetitions 22 through 41 in
Fig. 3 the errors do not decay monotonically and can be
worse than in Fig. 4. So, the double wave of learning
with two repetitions per time step has better initial
behavior, but one pays some price later with worse
transient behavior after the transients have decayed
significantly.

The concept of learning in a wave was first introduced
in Ref. [8] for centralized linear learning control as a
It
was introduced here for a different reason, as a way to

method to improve the learning control transients.

decouple the subsystems when the subsystems are
learning simultaneously. It may have advantages in
producing better transients as well. This may be true
when one has only poor a priori knowledge of the system,
but the fact that the learning transients are better in Figs.
2 than in 3 indicates that when one knows the P,
matrices to within 10%, there is no need to learn in a
wave for purposes of improving transients.

All of the above results used the time varying
linearized difference equations for horizontal motion of

the polar coordinate robot model. Figures 5 and 6 apply



32 A18d A3 E

0.12 subsystem 1 o1 subsystem 2
’ 415t ' 31st
ials Tith 3ist
g o0sp OB -
WEAREY
% 006} i nd B
,%: 0.06 i 4 &'_u E
g 004} i- A Al g
, Soor VLY
| | AL
s, o 2 ¥
o s N
4] 0.5 1
time {sec) time (sec)

Fig. 5 Error histories for one wave of learning in the
nonlinear polar robot model, using for learning
at each time step, with sample time T=0.1 sec.

0.15 subsysiem 1 0.1 subsystem 2
31st 3
TN 005 i 151\'05
0.1} ) \ \ il 3 \\ .’7
% ist i F K2
‘B 1 \ ’, B 2
g ; vl g
Z oost . g 2
e Pt v, P
g -~ S E
E SRl e SR E
O 4
/
.0.05 4ist
0 03 1
time {sec) dme {sec)

Fig. 6  Error histories for one wave of learning in
the nonlinear polar robot model, using two
repetitions for learning at each time step, with
sample time T=0.05 sec.

subsystem 1 subsystem 2
06 1
0.ssf
g g
g £

T ost £

2 I

€ 045t { €

04 -4
0 0. 1 0 05 3
time (sec} time (sec)

Fig.7  Desired trajectories for two different
subsystems

decentralized learning control the nonlinear

differential equation model in order to see the effects of
nonlinearities.  Figure 5 repeats Fig. 4 for these
nonlinear differential equations, i.e., it uses learning in a
wave with four repetitions for each time step, before
the

letting the wave progress a time step.  As before,
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The
error histories are similar to those for the linearized time

wave of learning is complete after 41 repetitions.

varying model in Fig. 4, although for subsystem 2 the
results are somewhat worse throughout for repetition 5,
In the
nonlinear case, the multiple repetitions for each time step

and somewhat worse at the end in repetition 11.

try to correct for not only the coupling in the input
matrices introduced in the time discretization, but also
for system nonlinearities. Figure 6 cuts the sample time
in half to 0.05 seconds, which decreases both the
coupling in the input matrices and the influence of
nonlinearities during one time step. The number of
repetitions per time step is decreased to two, so that the
wave of learning is again finished at the end of 41
Thus, we study the trade-off between

decreasing these coupling effects by decreasing the

repetitions.

number of time steps, versus decreasing these coupling
effects by repeated repetitions at the same time step.
Comparing Figs. 5 and 6, does not give a clear
indication of which approach is best. For subsystem 2,
using the smaller sample time results in a substantial
improvement in performance at repetition 5, but a

somewhat worse error in repetition 11.

7. Concluding Remarks

In this paper, two classes of methods were developed
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for decentralized indirect learning control based on
different agreements between the subsystems as to when
each subsystem learns. In the first, the subsystems
agree to alternate the learning of the complete trajectory
with the repetitions.

The second algorithm has the appeal of learning in a
wave progressing from the start of the p-step process and
progressing to the end, with all subsystems learning
simultaneously the same time step. Fewer parameters
need to be identified when learning in a wave than in the
alternate learning approach, and this distinction is even
more extreme in the case of time-invariant systems. In
[8], learning in a wave similar to this was used with the
integral control based learning control, as one technique
to have contro! over the size of the transients in the
learning process.  Numerical results indicate that
learning in a wave is preferable to the alternate learning
method when one has very poor a priori knowledge of
the system, but the reverse is true if one has a reasonable
system model.

Examples also illustrate the trade-offs between how
many repetitions are used for each time step when
learning in a wave, how many waves of learning to use,

and how small a sample time to use.
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