• Title/Summary/Keyword: 복합공간

Search Result 1,769, Processing Time 0.038 seconds

Vegetation Classification and Ecological Characteristics of Black Locust (Robinia pseudoacacia L.) Plantations in Gyeongbuk Province, Korea (경북지방 아까시나무 조림지의 식생유형과 생태적 특성)

  • Jae-Soon Song;Hak-Yun Kim;Jun-Soo Kim;Seung-Hwan Oh;Hyun-Je Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • This study was established to provide basic information necessary for ecological management to restore the naturalness of black locust (Robinia pseudoacacia L.) plantations located in the mountains of Gyeongbuk, Korea. Using vegetation data collected from 200 black locust stands, vegetation types were classified using the TWINSPAN method, the spatial arrangement status according to the environmental gradient was identified through DCA analysis, and a synoptic table of communities was prepared based on the diagnostic species determined by determining community fidelity (Φ) for each vegetation type. The vegetation types were classified into seven types, namely, Quercus mongolica-Polygonatum odoratum var. pluriflorum type, Castanea crenata-Smilax china type, Clematis apiifolia-Lonicera japonica type, Rosa multiflora-Artemisia indica type, Quercus variabilis-Lindera glauca type, Ulmus parvifolia-Celtis sinensis type, and Prunus padus-Celastrus flagellaris type. These types usually reflected differences in complex factors such as altitude, moisture regime, successional stage, and disturbance regime. The mean relative importance value of the constituent species was highest for black locust(39.7), but oaks such as Quercus variabilis, Q. serrata, Q. mongolica, Q. acutissima, and Q. aliena were also identified as important constituent species with high relative importance values, indicating their potential for successional trends. In addition, the total percent cover of constituent species by vegetation type, life form composition, species diversity index, and indicator species were compared.

Numerical Simulation of Standing Column Well Ground Heat Pump System Part II: Parametric Study for Evaluation of the Performance of Standing Column Well (단일심정 지열히트펌프의 수치적 모델링 Part II: 단일심정 지열히트펌프의 성능평가를 위한 매개변수 연구)

  • Park, Du-Hee;Kim, Kwang-Kyun;Kwak, Dong-Yeop;Chang, Jae-Hoon;Na, Sang-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • The SCW numerical model described in the companion paper was used to carry out a comprehensive parametric study to evaluate the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth, well diameter, dip tube diameter, bleeding rate, were used in the study. Two types of numerical simulations were performed. The first type was used to perform short-term (24-hour) simulation, while the second type 14 day simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. The thermal conductivity had the most important influence on the performance of the SCW. With the increase in the geothermal gradient, the performance increased in the heat mode, but decreased in the cooling mode. The hydraulic conductivity influenced the performance when the value was larger than $10^{-4}m/s$. The depth of the well increased the performance, but at the cost of increased cost of boring. The bleeding had an important influence on SCW, greatly enhancing the performance at a limited increased cost of operation. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

Performance analysis and prediction through various over-provision on NAND flash memory based storage (낸드 플래시 메모리기반 저장 장치에서 다양한 초과 제공을 통한 성능 분석 및 예측)

  • Lee, Hyun-Seob
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.343-348
    • /
    • 2022
  • Recently, With the recent rapid development of technology, the amount of data generated by various systems is increasing, and enterprise servers and data centers that have to handle large amounts of big data need to apply high-stability and high-performance storage devices even if costs increase. In such systems, SSD(solid state disk) that provide high performance of read/write are often used as storage devices. However, due to the characteristics of reading and writing on a page-by-page basis, erasing operations on a block basis, and erassing-before-writing, there is a problem that performance is degraded when duplicate writes occur. Therefore, in order to delay this performance degradation problem, over-provision technology of SSD has been applied internally. However, since over-provided technologies have the disadvantage of consuming a lot of storage space instead of performance, the application of inefficient technologies above the right performance has a problem of over-costing. In this paper, we proposed a method of measuring the performance and cost incurred when various over-provisions are applied in an SSD and predicting the system-optimized over-provided ratio based on this. Through this research, we expect to find a trade-off with costs to meet the performance requirements in systems that process big data.

Analysis of public library book loan demand according to weather conditions using machine learning (머신러닝을 활용한 기상조건에 따른 공공도서관 도서대출 수요분석)

  • Oh, Min-Ki;Kim, Keun-Wook;Shin, Se-Young;Lee, Jin-Myeong;Jang, Won-Jun
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.41-52
    • /
    • 2022
  • Although domestic public libraries achieved quantitative growth based on the 1st and 2nd comprehensive library development plans, there were some qualitative shortcomings, and various studies have been conducted to improve them. Most of the preceding studies have limitations in that they are limited to social and economic factors and statistical analysis. Therefore, in this study, by applying the spatiotemporal concept to quantitatively calculate the decrease in public library loan demand due to rainfall and heatwave, by clustering areas with high demand for book loan due to weather changes and areas where it is not, factors inside and outside public libraries and After the combination, changes in public library loan demand according to weather changes were analyzed. As a result of the analysis, there was a difference in the decrease due to the weather for each public library, and it was found that there were some differences depending on the characteristics and spatial location of the public library. Also, when the temperature was over 35℃, the decrease in book loan demand increased significantly. As internal factors, the number of seats, the number of books, and area were derived. As external factors, the public library access ramp, cafe, reading room, floating population in their teens, and floating population of women in their 30s/40s were analyzed as important variables. The results of this analysis are judged to contribute to the establishment of policies to promote the use of public libraries in consideration of the weather in a specific season, and also suggested limitations of the study.

Application of Self-Organizing Map Theory for the Development of Rainfall-Runoff Prediction Model (강우-유출 예측모형 개발을 위한 자기조직화 이론의 적용)

  • Park, Sung Chun;Jin, Young Hoon;Kim, Yong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.389-398
    • /
    • 2006
  • The present study compositely applied the self-organizing map (SOM), which is a kind of artificial neural networks (ANNs), and the back propagation algorithm (BPA) for the rainfall-runoff prediction model taking account of the irregular variation of the spatiotemporal distribution of rainfall. To solve the problems from the previous studies on ANNs, such as the overestimation of low flow during the dry season, the underestimation of runoff during the flood season and the persistence phenomenon, in which the predicted values continuously represent the preceding runoffs, we introduced SOM theory for the preprocessing in the prediction model. The theory is known that it has the pattern classification ability. The method proposed in the present research initially includes the classification of the rainfall-runoff relationship using SOM and the construction of the respective models according to the classification by SOM. The individually constructed models used the data corresponding to the respectively classified patterns for the runoff prediction. Consequently, the method proposed in the present study resulted in the better prediction ability of runoff than that of the past research using the usual application of ANNs and, in addition, there were no such problems of the under/over-estimation of runoff and the persistence.

An Ecosystem Model and Content Research of the Satellite Information Utilization Business (위성정보 활용 사업의 생태계 모델과 콘텐츠 연구)

  • Seungkuk Baik ;Jinhwa Roh;Hyounjoo Shim;Xuanning Zhu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1075-1084
    • /
    • 2023
  • Satellite-derived data is collected by observing the Earth and is used in various fields such as national defense, natural disasters, location-based services, infrastructure, environment, energy, marine, and insurance. This study aims to present the virtuous cycle structure of the satellite information data industry and the business ecosystem model of the industry. As a research method, cases were collected and categorized from the following areas: literature, online, application, and content. The results show that the ecosystem model of the satellite information data industry provides an approach to content services in public and commercial areas, and develops various algorithmic technologies to facilitate content production and services at the level of complex general-purpose technologies. Second, in terms of content typology, satellite information data can be subdivided into monitoring content, urban space monitoring content, and satellite information content. Third, the consumption value of satellite content could be subdivided into informational value, environmental, social and governance (ESG) value, educational value, and content value. In order to expand the global content market, Korea will need to focus on creating an ecosystem for the satellite information industry and discovering differentiated content. It will also need to increase the popularization and accessibility of data to the general public and promote the Korean K-Satellite Information Data Industry ecosystem through government support, policy efforts, and policies such as establishing legal systems, increasing investment, and training human resources.

Mapping Burned Forests Using a k-Nearest Neighbors Classifier in Complex Land Cover (k-Nearest Neighbors 분류기를 이용한 복합 지표 산불피해 영역 탐지)

  • Lee, Hanna ;Yun, Konghyun;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.883-896
    • /
    • 2023
  • As human activities in Korea are spread throughout the mountains, forest fires often affect residential areas, infrastructure, and other facilities. Hence, it is necessary to detect fire-damaged areas quickly to enable support and recovery. Remote sensing is the most efficient tool for this purpose. Fire damage detection experiments were conducted on the east coast of Korea. Because this area comprises a mixture of forest and artificial land cover, data with low resolution are not suitable. We used Sentinel-2 multispectral instrument (MSI) data, which provide adequate temporal and spatial resolution, and the k-nearest neighbor (kNN) algorithm in this study. Six bands of Sentinel-2 MSI and two indices of normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as features for kNN classification. The kNN classifier was trained using 2,000 randomly selected samples in the fire-damaged and undamaged areas. Outliers were removed and a forest type map was used to improve classification performance. Numerous experiments for various neighbors for kNN and feature combinations have been conducted using bi-temporal and uni-temporal approaches. The bi-temporal classification performed better than the uni-temporal classification. However, the uni-temporal classification was able to detect severely damaged areas.

A study on the estimation of the K-address information industry and its economic effect (주소정보산업 규모 산정 및 경제적 효과 분석)

  • Kim, Daeyong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.33-48
    • /
    • 2024
  • This study aims to establish the scope and statistics of the K-address information industry in Korea, estimating its size and prospects and estimates the economic effects through K-address information industry based on Input-Output analysis. Considering the characteristics and sectoral structure of the K-address information industry, the study delineates the scope and specific sectors, constructing sectoral statistics linked to the KSIC and the Bank of Korea's industrial classification. The study estimates the sectoral industry size, taking into account potential markets. Furthermore, it analyzes the economic impact of each sector within the K-address information industry. To figure out the economic effects, the study conducts Input-Output analysis by setting the K-address information industry as an exogenous sector in the input-output table. The results indicate that the overall size of the K-address information industry is estimated to grow from 406.1 billion KRW in 2021 to 3.65 trillion KRW in 2030. The economic effects of the K-address information industry vary by sector, emphasizing the importance of synergies and integration with related sectors, particularly those with significant inducement effects in high value-added manufacturing and service sectors. Furthermore, the industry's sensitivity to economic fluctuations is evident through the input-output analysis of inter-industry chain effects.

Analysis of Development Project Conditions and Potential Demand Characteristics in High-Speed Rail Station Areas (전국 고속철도 역세권의 개발 사업여건 및 잠재수요 특성 분석)

  • Bae, Seong-Ho;Ma, Kang-Rae;Kim, Chan-Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.75-89
    • /
    • 2024
  • As the problem of lowering the efficiency of urban services in small and medium-sized cities in the non-metropolitan area intensifies, the necessity of developing a railway station area is being emphasized to form a compressed urban space through regional bases. Although major station areas in large cities are being developed in the form of complex, the analysis of the development location characteristics of the small and medium-sized city station areas is insufficient. The purpose of this study is to analyze the characteristics of development project conditions and potential demand in the high-speed rail station areas across the country, identify the differences in locational characteristics according to the type of city, such as 'metropolitan city', 'large city in non-metropolitan city', 'medium and small city in non-metropolitan city', and find out the appropriate development method. As a result of the analysis, it was analyzed that the 'metropolitan area metropolitan area' has high potential demand and poor business conditions. On the other hand, in the case of the non-metropolitan area, it was analyzed that the 'small and medium-sized city station area' has good business conditions and low potential demand characteristics, and the 'large city station area' has intermediate characteristics. This suggests the need for different development methods in the development of metropolitan and small and medium-sized city station areas. The analysis results of this study show that it is desirable to encourage private participation in large-scale metropolitan station areas, which require large-scale input, to maximize potential demand, and to encourage private participation through public-led projects based on favorable business conditions or development based on regional characteristics.

A Case Study on the Smart Tourism City Using Big Data: Focusing on Tourists Visiting Jeju Province (빅 데이터를 활용한 스마트 관광 도시 사례 분석 연구: 제주특별자치도 관광객 데이터를 중심으로)

  • Junhwan Moon;Sunghyun Kim;Hesub Rho;Chulmo Koo
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.1-27
    • /
    • 2019
  • It is possible to provide Smart Tourism Service through the development of information technology. It is necessary for the tourism industry to understand and utilize Big Data that has tourists' consumption patterns and service usage patterns in order to continuously create a new business model by converging with other industries. This study suggests to activate Jeju Smart Tourism by analyzing Big Data based on credit card usage records and location of tourists in Jeju. The results of the study show that First, the percentage of Chinese tourists visiting Jeju has decreased because of the effect of THAAD. Second, Consumption pattern of Chinese tourists is mostly occurring in the northern areas where airports and duty-free shops are located, while one in other regions is very low. The regional economy of Jeju City and Seogwipo City shows a overall stagnation, without changes in policy, existing consumption trends and growth rates will continue in line with regional characteristics. Third, we need a policy that young people flow into by building Jeju Multi-complex Mall where they can eat, drink, and go shopping at once because the number of young tourists and the price they spend are increasing. Furthermore, it is necessary to provide services for life-support related to weather, shopping, traffic, and facilities etc. through analyzing Wi-Fi usage location. Based on the results, we suggests the marketing strategies and public policies for understanding Jeju tourists' patterns and stimulating Jeju tourism industry.