• Title/Summary/Keyword: 복소퍼텐셜

Search Result 6, Processing Time 0.022 seconds

Stress Analysis of Composite Plate with an Elliptical Hole or a Crack Using Complex Potentials (복소퍼텐셜을 이용한 타원공 또는 균열을 가진 복합재 평판 응력해석)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.56-63
    • /
    • 2007
  • An approach using complex potentials is presented for analysis of composite plate with an elliptical hole or a rectilinear crack. Composite structure is susceptible to encounter impact damages, which lead to considerable decrease in its residual strength. Such impact damages could be modeled as an equivalent elliptical hole or notch-like crack. Even though finite element method is widely used to analyze stresses or fracture mechanics parameters around such damage, it is tedious to make successive FE-modeling for damage tolerance assessment under fatigue loadings. In this point of view, the solutions based on complex potentials are very simple and easy to use. The computed results are also compared and discussed with those from FEA.

Weight Function Theory for Piezoelectric Materials with a Crack (균열을 가진 압전재료에서의 가중함수이론)

  • 손인호;안득만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.208-216
    • /
    • 2003
  • In this paper, a two-dimensional electroelastic analysis is performed on a piezoelectric material with an open crack. The approach of Lekhnitskii's complex potential functions is used in the derivation and Bueckner's weight function theory is extended to piezoelectric materials. The stress intensity factors and the electric displacement intensity factor are calculated by the weight function theory.

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study derives the expressions of vector gravity and gravity gradient tensor due to an elliptical cylinder. The vector gravity for an arbitrary three-dimensional (3D) body is obtained by differentiating the gravitational potential, including the triple integral, according to the shape of the body in each axis direction. The vector gravity of the 3D body with axial symmetry is integrated along the axial direction and reduced to a double integral. The complex Green's theorem using complex conjugates subsequently converts the double integral into a one-dimensional (1D) closed-line integral. Finally, the vector gravity due to the elliptical cylinder is derived using 1D numerical integration by parameterizing a boundary of the elliptical cross-section as a closed line. Similarly, the gravity gradient tensor due to the elliptical cylinder is second-order differentiated from the gravitational potential, including the triple integral, and integrated along the vertical axis direction reducing it to a double integral. Consequently, all the components of the gravity gradient tensor due to an elliptical cylinder are derived using complex Green's theorem as used in the case of vector gravity.

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Disk (타원판에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 2024
  • In this paper, the vector gravity and gravity gradient tensor of an elliptical disk are derived. The vector gravity of an elliptical disk is defined by differentiating the gravitational potential due to the elliptical disk expressed by a double integral with respect to each axial direction. The vector gravity defined by the double integral is then transformed into a line integral of a closed curve along the elliptical disk boundary using the complex Green's theorem. Finally, vector gravity due to the elliptical disk is derived by 1D parametric numerical integration along the elliptical disk boundary. The xz, yz, zz components of the gravity gradient tensor due to the elliptical disk are obtained by differentiating the vector gravity with respect to vertical direction. The xx, yy, xy components are derived by differentiating the horizontal components of the vector gravity in the form of a double integral with respect to horizontal directions and then using the complex Green's theorem.

Expressions of Magnetic vector and Magnetic Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 자력 벡터 및 자력 변화율 텐서 반응식)

  • Hyoungrea Rim;Jooyoung Eom
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • In this study, the expressions of magnetic vector and magnetic gradient tensor due to an elliptical cylinder were derived. Igneous intrusions and kimberlite structures are often shaped like elliptical cylinders with axial symmetry and different radii in the strike and perpendicular directions. The expressions of magnetic fields due to this elliptical cylinder were derived from the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor. The magnetic gradient tensor due to an elliptical cylinder is derived by differentiating the magnetic fields. This method involves obtaining a total of 10 triple derivative functions acquired by differentiating the gravitational potential of the elliptical cylinder three times in each axis direction. As the order of differentiation and integration can be exchanged, the magnetic gradient tensor was derived by differentiating the gravitational potential of the elliptical cylinder three times in each direction, followed by integration in the depth direction. The remaining double integration was converted to a complex line integral along the closed boundary curve of the elliptical cylinder in the complex plane. The expressions of the magnetic field and magnetic gradient tensor derived from the complex line integral in the complex plane were shown to be perfectly consistent with those of the circular cylinder derived by the Lipschitz-Hankel integral.

Expressions of Magnetic Field and Magnetic Gradient Tensor due to an Elliptical Disk (타원판에 의한 자력 및 자력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.108-118
    • /
    • 2024
  • In this study, expressions for the magnetic field and magnetic gradient tensor due to an elliptical disk were derived. Igneous intrusions and kimberlite structures often have elliptical cylinders with axial symmetry and elliptical cross sections. An elliptical cylinder with varying cross-sectional areas was approximated using stacks of elliptical disks. The magnetic fields of elliptical disks were derived using the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor, as described in a previous study (Rim, 2024). The magnetic gradient tensor due to an elliptical disk is derived by differentiating the magnetic fields, which is equivalent to obtaining ten triple-derivative functions acquired by differentiating the gravitational potential of the elliptical disk three times in each axis direction. Because it is possible to exchange the order of differentiation, the magnetic gradient tensor is derived by differentiating the gravitational potential of the elliptical disk three times, which is then converted into a complex line integral along the closed boundary curve of the elliptical disk in the complex plane. The expressions for the magnetic field and magnetic gradient tensor derived from a complex line integral in complex plane are perfectly consistent with those of the circular disk derived from the Lipschitz-Hankel integral.