DOI QR코드

DOI QR Code

Expressions of Magnetic Field and Magnetic Gradient Tensor due to an Elliptical Disk

타원판에 의한 자력 및 자력 변화율 텐서 반응식

  • Hyoungrea Rim (Department of Earth Science Education, Pusan National University)
  • 임형래 (부산대학교 지구과학교육과)
  • Received : 2024.04.29
  • Accepted : 2024.05.27
  • Published : 2024.05.31

Abstract

In this study, expressions for the magnetic field and magnetic gradient tensor due to an elliptical disk were derived. Igneous intrusions and kimberlite structures often have elliptical cylinders with axial symmetry and elliptical cross sections. An elliptical cylinder with varying cross-sectional areas was approximated using stacks of elliptical disks. The magnetic fields of elliptical disks were derived using the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor, as described in a previous study (Rim, 2024). The magnetic gradient tensor due to an elliptical disk is derived by differentiating the magnetic fields, which is equivalent to obtaining ten triple-derivative functions acquired by differentiating the gravitational potential of the elliptical disk three times in each axis direction. Because it is possible to exchange the order of differentiation, the magnetic gradient tensor is derived by differentiating the gravitational potential of the elliptical disk three times, which is then converted into a complex line integral along the closed boundary curve of the elliptical disk in the complex plane. The expressions for the magnetic field and magnetic gradient tensor derived from a complex line integral in complex plane are perfectly consistent with those of the circular disk derived from the Lipschitz-Hankel integral.

이 논문에서는 타원판의 자력과 자력 변화율 텐서 반응식을 유도하였다. 화성암 관입이나 킴벌라이트 구조 등은 축 대칭성을 가지면서 단면이 타원인 경우가 많다. 타원 단면의 넓이가 변하는 타원 기둥은 타원판의 조합으로 모사할 수 있다. 타원판의 자력 반응은 이전 논문(Rim, 2024)에서 유도한 중력 변화율 텐서에 자화 방향에 대한 정보를 포함시킨 포아송 관계식을 이용하여 유도하였다. 타원판의 자력 변화율 텐서는 벡터 자력을 미분하여 유도하는데 타원판의 인력 퍼텐셜을 각 축방향으로 3회 미분한 총 10개의 삼중 미분 함수를 구하는 것과 동일하다. 미분의 순서는 바꾸는 것이 가능하므로 결과적으로 자력 변화율 텐서는 타원판의 인력 퍼텐셜을 3회 미분한 후, 복소 평면에서 타원판의 경계를 폐곡선으로 하는 경로를 따라 선적분으로 변환하여 유도된다. 이 논문에서 복소 평면에서 선적분으로 유도한 자력 및 자력 변화율 텐서 반응식은 립쉬츠-한켈 적분으로 유도한 원판의 자력 및 자력 변화율 텐서 반응식과 완벽하게 일치함을 보였다.

Keywords

Acknowledgement

논문의 완성도를 높이기 위해 상세한 검토 의견을 제시해 주신 익명의 심사위원께 감사드립니다. 이 논문은 부산대학교 기본연구지원사업의 지원으로 수행되었습니다.

References

  1. Beiki, M., Clark, D. A., Austin, J. R., and Foss, C. A., 2012, Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data, Geophysics, 77(6), J23-J37, doi: 10.1190/geo2011-0437.1.
  2. Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press, doi: 10.1017/CBO9780511549816.
  3. Eason, G., Noble, B., and Sneddon, I. N., 1955, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Philos. Trans. R. Soc. A, Math. Phys. Sci., 247(935), 529-551, doi: 10.1098/rsta.1955.0005.
  4. Heath, P. J., Greenhalgh, S., and Direen, N. G., 2005, Modelling gravity and magnetic gradient tensor responses for exploration within the regolith, Explor. Geophys., 36(4), 357-364, doi: 10.1071/EG05357.
  5. Kamm, J., Lundin, I. A., Bastani, M., Sadeghi, M., and Pedersen, L. B., 2015, Joint inversion of gravity, magnetic, and petrophysical data - A case study from a gabbro intrusion in Boden, Sweden, Geophysics, 80(5), B131-B152, doi: 10.1190/geo2014-0122.1.
  6. Kwok, Y. K., 1989, Conjugate complex variables method for the computation of gravity anomalies, Geophysics, 54(12), 1629-1637, doi: 10.1190/1.1442631.
  7. Kwok, Y.-K., 1991a, Singularities in gravity computation for vertical cylinders and prims, Geophysical Journal International, 104(1), 1-10, doi: 10.1111/j.1365-246X.1991.tb02490.x.
  8. Kwok, Y. K., 1991b, Gravity gradient tensors due to a polyhedron with polygonal facets, Geophysical Prospecting, 39(3), 435-443, doi: 10.1111/j.1365-2478.1991.tb00320.x.
  9. Kwok, Y. K., and Beyer, L. A., 1993, Gravity due to a body with rotational symmetry about a vertical axis, Geophysics, 58(2), 298-306, doi: 10.1190/1.1443414.
  10. Lowrie, W., and Fichtner, A. 2020, Fundamentals of Geophysics 3rd ed., Cambridge University Press, doi: 10.1017/9781108685917.
  11. Matende, K., and Mickus, K., 2021, Magnetic and gravity investigation of kimberlites in north-central Botswana, Geophysics, 86(2), B67-B78, doi:10.1190/geo2020-0450.1.
  12. Menezes, P. T. L., and Garcia, M. D. M., 2007, Kimberlite exploration at Serra da Canastra province, Brazil, Geophysics, 72(3), M1-M5, doi: 10.1190/1.2710352.
  13. Ren, Z., Chen, C., Tang, J., Chen, H., Hu, S., Zhou, C., and Xiao, X., 2017, Closed-form formula of magnetic gradient tensor for a homogeneous polyhedral magnetic target: A tetrahedral grid example, Geophysics, 82(6), WB21-WB28, doi: 10.1190/geo2016-0470.1.
  14. Ren, Z., Chen, H., Chen, C., Zhong, Y., and Tang, J., 2019, New analytical expression of the magnetic gradient tensor for homogeneous polyhedrons, Geophysics, 84(3), A31-A35, doi: 10.1190/geo2018-0741.1.
  15. Rim, H., 2022, Closed-form expressions of magnetic field and magnetic gradient tensor due to a circular disk, Geophys. and Geophys. Explor., 25(1), 38-43, doi: 10.7582/GGE.2022.25.1.38. (in Korean with English abstract)
  16. Rim, H., 2024, The expressions of vector gravity and gravity gradient tensor due to an elliptical disk, Geophys. and Geophys. Explor., 27(1), 51-56, doi: 10.7582/GGE.2024.27.1.051. (in Korean with English abstract)
  17. Rim, H., and Eom, J., 2023, Expressions of magnetic vector and magnetic gradient tensor due to an elliptical cylinder, Geophys. and Geophys. Explor., 26(2), 77-83, doi: 10.7582/GGE.2023.26.2.077. (in Korean with English abstract)
  18. Saribudak, M., 2023, Inner structure of monogenetic Pilot Knob submarine volcano (Austin, Texas) revealed by electrical resistivity tomography and magnetic surveys, Geophysics, 88(5), B207-B220, doi: 10.1190/geo2022-0658.1.
  19. Vasanthi, V., and Mallick, K., 2005, Bouguer gravity anomalies and occurrence patterns of kimberlite pipes in Narayanpet-Maddur Regions, Andhra Pradesh, India, Geophysics, 70(1), J13-J24, doi: 10.1190/1.1852778.