• Title/Summary/Keyword: 복소수 변위

Search Result 14, Processing Time 0.032 seconds

The Applications of Viscoelastic Dampers for Vibration control (고층건물의 진동제어를 위한 점탄성 감쇠기의 활용)

  • 김진구;홍성일;이경아;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • 복소모드 중첩법은 점탄성 감쇠기가 설치된 비비례 감쇠시스템의 정확한 동적 거동을 예측할 수 있는 방법이지만 많은 자유도를 갖는 고층건물의 해석시 고유치 해석과 모드중첩과정에서 많은 시간과 노력이 필요하게 된다. 본 논문에서는 효율적인 모형화를 위하여 강막가정과 행렬응축기법을 적용하고 구조물의 진동에 영향을 주는 주요모드의 선택을 위한 복소모드 응답참여계수를 제안하므로써 복소모드 중첩법의 효율성은 높였다. 또한 비비례 감쇠시스템에서 감쇠를 고려하여 응답스펙트럼을 재구성한후 선택된 주요 모드를 중첩하여 최대층간변위가 발생하는 곳에 감쇠기를 설치하였다 이 방법은 감쇠기가 설치된 구조물에 대하여 만족되는 수준의 최대층간변위가 발생할 때 까지 고유치 해석만을 반복.수행하면서 감쇠기를 연속적으로 설치하는 방법이다. 제안된 방법의 정확성과 효율성을 검토하기 위하여 예제 구조물의 대상으로 해석한 결과 응답의 정확성을 유지하면서 해석에 필요한 시간을 대폭 절감할 수 있었다.

  • PDF

Numerical and Experimental Analysis for Disc Brake Squeal Induced by Caliper Mode (캘리퍼 모드에 의한 디스크 브레이크 스퀼 시험 및 해석)

  • Choi, Hoil;Kang, Jaeyoung;Gil, Hojong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1351-1358
    • /
    • 2014
  • This study numerically simulates brake squeal and validates it experimentally by using a lab-scaled brake dynamometer. The system frequencies of the disc brake are traced with respect to the brake pressure by using a modal test and FEM. Then, the squeal frequencies measured from the brake dynamometer are found to correspond to the brake system mode with the dominant displacement of the caliper and pad. Furthermore, a complex eigenvalue analysis conducted using the finite element model confirms that the caliper mode generating the rotational displacement of the pad becomes unstable owing to the negative friction-velocity slope.

Three-dimensional Elastic Green's Solution by Formal Time-integration Method (시간적분을 이용한 3차원 탄성파 임펄스 반응 해의 계산)

  • Park Kwon Gyu;Shin Changsoo;Yoon Kwangjin;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.4
    • /
    • pp.125-128
    • /
    • 2000
  • An ad hoc method of deriving three-dimensional elastic Greens solution for displacements is proposed in this study; Instead of direct evaluation of four-dimensional Fourier integral that is usual in spectral approaches, we first derived the expression for particle acceleration using the calculus of residues, and then, derived the expression for particle displacement by direct formal integration with respect to time. As a result, we can detour the disconcertion related to causality due to directly evaluating the integral with respect to angular frequency in conventional spectral approach.

  • PDF

Finite Element Vibration Analysis of Structures with Cyclic Symmetry using Discrete Fourier Transform (이산푸리에 변환을 이용한 순환대칭 구조물의 유한요소 진동 해석)

  • 김창부;김정락
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.221-226
    • /
    • 1995
  • 터빈 익렬, 펌프 익차, 원형 냉각탑, 치차 등과 같이 동일한 형상이 원주 방향으로 반복되어 있는 순환 대칭 구조물의 진동특성을 유한 요소법을 사용하여 해석하는 경우에 전체구조를 모델링하는 대신에 구조물을 동일한 형상의 부분구조로 분할하여 부분구조 한개만을 모델링하고 분할된 경계에서 적절한 경계조건을 부과하여 진동해석을 수행함으로서 컴퓨터 기억용량을 절감시키고 계산시간을 단축할 수 있는 방법이 널리 사용되고 있다. Orris and Petyt[1]는 부분구조의 양쪽 분할 경계면, 즉 연결 경계상에 있는 절점변위의 상관관계를 복소파동전파식을 이용해서 구하여 부분구조의 감소된 복소강성행렬 및 질량행렬을 만들고 실수부와 허수부를 분리하여 유한요소해석을 수행하는 방법을 제안하였다. 유한요소 프로그램 ANSYS[2]에서는 이와 같은 방법을 사용하고 있다. Thomas[3]는 순회 정규모드를 이용하였고, 참고문헌[4]에서는 순회행렬을 이용하였다. 또한 유한요소 프로그램 MSC/NASTRAN[5]에서는 푸리에 급수를 이용하고 유한요소 절점의 위치 및 변위를 원통 좌표계를 표현하여 순환대칭구조물의 유한요소해석을 수행할 수 있도록 되어있다. 본 논문에서는 순환 대칭구조물의 형상의 주기성과 순환성을 고려하여 이산퓨리에 변환을 이용함으로써 순환대칭구조물의 유한요소진동해석을 체계적으로 저용량의 컴퓨터에서 신속하고 정확하게 수행할 수 있는 방법을 제안하고자 한다.

  • PDF

Theoretical Modeling of Surface Wave Propagation for SASW Testing Method (수중 주파수영역표면파괴기법의 역해석 과정에서 적용되는 파동해석기법)

  • Lee, Byung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Applicabilities of two numerical methods, the 2-dimensional and the 3-dimensional method, are evaluated to inverse test results obtained from the underwater SASW(Spectral -Analysis-of-Surface-Waves) method. As a result of this study, it has been found that the 2-dimensional method can supposed to be applicable for the cases where stiffness of soil layer increases gradually with depth, and the stiffness is relatively low. For the other cases, however, it has been concluded that the 3-dimensional method needs to be applied to determine realistic theoretical dispersion curves. An example is also shown that in situ soil profile underwater is estimated from experimental dispersion curves using the 3-dimensional method. As a results, it can be concluded that the underwater SASW method can be effectively applied to explore the underwater soil condition.

  • PDF

Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements (박벽보-기둥 요소의 개선된 정적 요소강성행렬)

  • Yun, Hee Taek;Kim, Nam Il;Kim, Moon Young;Gil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • In order to perform the spatial buckling and static analysis of the nonsymmetric thin-walled beam-column element, improved exact static stiffness matrices were evaluated using equilibrium equation and force-deformation relationships. This numerical technique was obtained using a generalized linear eigenvalue problem, by introducing 14 displacement parameters and system of linear algebraic equations with complex matrices. Unlike the evaluation of dynamic stiffness matrices, some zero eigenvalues were included. Thus, displacement parameters related to these zero eigenvalues were assumed as polynomials, with their exact distributions determined using the identity condition. The exact displacement functions corresponding to three loadingcases for initial stress-resultants were then derived, by consistently combining zero and nonzero eigenvalues and corresponding eigenvectors. Finally, exact static stiffness matrices were determined by applying member force-displacement relationships to these displacement functions. The buckling loads and displacement of thin-walled beam were evaluated and compared with analytic solutions and results using ABAQUS' shell element or straight beam element.

Mode Shape of Timoshenko Beam Having Different Circular Cross-Sections (다단 티모센코 원형단면봉의 연속 고유모우드)

  • 전오성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.118-123
    • /
    • 1997
  • The study suggests a method to analyze the vibration of the multi-stepped beam having the different circular cross-sections. The rotatory inertia, the shear deformation and the torque applied at both ends of the beam are considered in the governing equation. The complex displacement and the variable separation are introduced to derive the solution of the equation of each uniform beam element having constant cross-section. Then boundary conditions are applied to solve the total system. This method uses the mathematically exact solutions unlike numerical method such as the finite element method in solving the problem having the simultaneous differential equations of Timoshenko beam theory. the natural frequencies and the corresponding mode shapes are precise, especially the mode shapes are continuous.

  • PDF

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

Real-Time Implementation of Medical Ultrasound Strain Imaging System (의료용 초음파 스트레인 영상 시스템의 실시간 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Bae, Moo-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

Optical Encryption using a Random Phase Image and Shift Position in Joint Transform Correlation Plane (결합 변환 상관 평면의 이동 변위와 무작위 위상 영상을 이용한 광 암호화 시스템)

  • Shin, Chang-Mok;Lee, Woo-Hyuk;Cho, Kyu-Bo;Kim, Soo-Joong;Seo, Dong-Hoan;Lee, Sung-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.248-255
    • /
    • 2006
  • Most optical security systems use a 4-f correlator, Mach-Zehnder interferometer, or a joint transform correlator(JTC). Of them, the JTC does not require an accurate optical alignment and has a good potential for real-time processing. In this paper, we propose an image encryption system using a position shift property of the JTC in the Fourier domain and a random phase image. Our encryption system uses two keys: one key is a random phase mask and the other key is a position shift factor. By using two keys, the proposed method can increase the security level of the encryption system. An encrypted image is produced by the Fourier transform for the multiplication image, which resulted from adding position shift functions to an original image, with a random phase mask. The random phase mask and position shift value are used as keys in decryption, simultaneously. For the decryption, both the encrypted image and the key image should be correctly located on the JTC. If the incorrect position shift value or the incorrect key image is used in decryption, the original information can not be obtained. To demonstrate the efficiency of the proposed system, computer simulation is performed. By analyzing the simulation results in the case of blocking of the encrypted image and affecting of the phase noise, we confirmed that the proposed method has a good tolerance to data loss. These results show that our system is very useful for the optical certification system.