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Three-dimensional Elastic Green’s Solution
by Formal Time-integration Method
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Abstract : An ad hoc method of deriving three-dimensional elastic Greens solution for displacements is proposed in this
study; Instead of direct evaluation of four-dimensional Fourier integral that is usual in spectral approaches, we first derived
the expression for particle acceleration using the calculus of residues, and then, derived the expression for particle dis-
placement by direct formal integration with respect to time. As a result, we can detour the disconcertion related to cau-

sality due to directly evaluating the integral with respect to angular frequency in conventional spectral approach.
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The problem of providing the Green'’s solution for two- or
three-dimensional elastic wave equations is of considerable
importance in both earthquake and exploration seismology.
There have been extensive studies and literatures on the ana-
lytic solution of the problems of this kind. These are broad-
ly classified into two categories: the potential approach based
on the Helmholtz vector decomposition theorem (White, 1965;
Achenbach, 1973; Aki and Richards, 1980; Pilant, 1978; Ben-
Menahem and Singh, 1981) and the spectral approach based
on the direct evaluation of complex Fourier integral (Eason
et al., 1956).

White (1965), Achenbach (1973) and Aki and Richards
(1980) presented a specific time domain formula for dis-
placement in a homogeneous, isotropic, unbounded medium
excited by a directional force. They defined displacements
and body forces in terms of Lamé potentials, and then solved
the wave equation for these potentials by evaluating the sur-
face integral given by the form of Kirchhoftf’s integral for-
mula. Pilant (1978) and Ben-Menahem and Singh (1981)
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and three-dimensional elastic wave equations. Especially,
Pilant (1978) suggested an ad hoc step where he newly
defined the scalar potential and the vector potential with
V-A; and VXxAg, respectively. On the other hand, Eason
et al. (1956) treated the problem of determining the distri-
bution of stress in an infinite elastic medium based on spec-
tral approach. They presented general solutions of the
equation of motions for various body force by evaluating a
four-dimensional Fourier integral. Among these, the three-
dimensional Green’s solution by impulsive point force was
given as an integral form of the solution by periodic point
force in cylindrical coordinates.

In this paper, we present another ad hoc method to derive
the time domain Green’s solution for particle displacement
based on the spectral approach. In the conventional spectral
approach, the Fourier integral was directly evaluated by
means of the calculus of residues. However, such direct
evaluation may be a nuisance due to the directivity terms in
the integrand and the poorly resolved issue of the “arrow of
time” that one meets when evaluating the integral with respect
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to temporal frequency by means of the calculus of residues
(Snieder, 1997). To avoid such a nuisance and the discon-
certion in causality problem, we first derive the time expres-
sion for particle acceleration by means of the calculus of
residues, and then use the direct formal integration with
respect to time in deriving the time expression for particle
displacement.

Integral Representation of the Greens Solution

In a three-dimensional homogeneous, isotropic, unbounded
medium, the displacements due to a directional force satis-
fies the elastic wave equation
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where u, v, w and f; are cartesian components of the dis-
placement vector and body force vector. p is the density, o
and S are the velocity of P- and S- wave, respectively.

Taking the Fourier transform of equation (1), the elastic
wave equation in the frequency-wavenumber domain is
given by a simple linear algebraic equation
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where U, V, and W are each component of displacemerits
vector and F;’s are those of the force vector in the frequency-
wavenumber domain. Here the Fourier transform pair is
defined as follows:
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Using the Cramer’s rule, the solution of equation (2) is given
by
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where D denotes the determinant of the coefficient matrix of
equation (2) and D; is the determinant obtained from D by
replacing its i-th column with the force vector. Therefore,
the displacements in time-space domain are given by the
inverse Fourier transform of the solution obtained from
equation (4), which lead to the direct evaluation of four-
dimensional integral via the calculus of residues.

Consider, for example, the vertical displacement due to a
vertical impulsive force, f =fZlAc where f,=6(x)6(y)6(2)8(2).
Then, by plugging F.=F,=0, and F=1 into equation (4), the
vertical displacement in the frequency-wavenumber domain
is given as
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Thus, the vertical displacement in time domain w(x, y, z,
£) will be given by the inverse Fourier transform of equation
(5) as follow:
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or by substituting the directivity terms with spatial deriva-
tives operators,
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where k=[k,, k, k] is the wavenumber vector and r=[x, y,
z] is the position vector of any observation point within the
domain. In the following derivation, for convenience, we
will use equation (6b) in describing our approach to derive
explicit time expression for particle displacement.
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Green’s Solution by Formal Time-Integration

Green’s Solution for Particle Acceleration

We begin our approach with the evaluation of integral
with respect to wavenumber by means of complex integral,
ie., the diéplacement in space-frequency domain. Let us
take the wriplet integral over the wavenumber space in equa-
tion (6b) and call it W(x, v, z, ©):
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These triplet integrals can be easily evaluated by means of
the calculus of residue in the spherical coordinates proposed
by Griffel (1981) (Appendix A), which precisely gives

dk dkdk,. (7)
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Then, the second term and the forth term are eventually can-

celed out each other, and thus, the time domain displace-
ment w(x, ¥, z, 1) is given by
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To obtain the explicit form of particle displacement, we
have to use the method of calculus of residues once more.
However, it is not clear how the pole on w=0 affects the
response, and this results in the pootly resolved issue of the
“arrow of the time” (Snieder, 1997).

At this point, we note that the integrand has the form of
twice-integration of exponential terms with respect to time.
Then, the expression for particle acceleration is readily derived
using the basic Fourier transform relation, ie., w=F '{-& W} .
Hence, we have
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and using the relation (9) again, the particle acceleration can
be explicitly represented with delta functions and their deriv-
atives as follow:
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Green’s Solution for displacement via Formal Time-inte-
gration
The time domain expression for particle displacement can
be derived by the formal integration of equation (13) with
respect to time using the definitions of the delta function

&7 and the Heaviside step function H(¢). This formal inte-
gration is straightforward, and thus, the vertical particle veloc-
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and the vertical displacement is given by
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Substituting the direction cosine z/r=cos@ into equation (15)
and applying the following integral relation

wix, y, z, )=

wix,y, z, D=
Y 4

b+ Bty (16)

[ o

T0(1—

Qv =i



128 L R e

We obtain
1 cos’ ry, 1 sin’@ r
x, ’ ’t\_ 8( 5(1‘——)
w250 ampo’ 7\ o) 4mpp? §
1 9 5
+41tpa ( )_[ o(~-1)dT. a7

Similar form of time domain expressions for arbitrary source
function is found in White (1965), Achenbach (1973), and
Aki and Richards (1980).

Conclusion

We proposed an ad hoc method of deriving Green’s solu-
tion for displacement in a homogeneous, isotropic, unbound-
ed medium excited by a directional force. We first derived
the expression for particle acceleration by using the Fourier
transform relations and calculus of residues, and then,
derived the expression for particle displacement by direct
formal integration with respect to time. 'As a result, we can
effectively reduced the mathematical difficulty in evaluating
the integral and detour the inconsistency between physics
and mathematics: the issue of the “arrow of time” which
may be encountered when directly evaluating the mtegral with
respect to angular frequency. :

This approach may be easily extended to two-dimensional
problems and problems having a multi-directional driving forces.
In addition, the formal expressions for particle accelerations
and particle velocities obtained while deriving the expression
for the displacement can be additional advantages, which is
helpful to have some insight for physical wave phenomena.
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Appendix A:
Evaluation of k-integral by Calculus of Residues

As a typical form of the triplet integral with respect to
wavenumber in equation (9) of the main text, consider an
integral
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where k=[k, k,, kz], r=[x, y, z], and & is real and positive.
This can be effectively evaluated in spherical coordinates
(k, 8, ¢) with axis along r (Griffel, 1981):

7 7 ”
k=R KK

dk dk.dk, (A.1)

ak-r
O=cos =

ky
= Y A2
o=tan” A2)

where &,k and k, are the cartesian components of the
vector k with respect to new axes of which the third is par-
allel to r. Then, equation (A.2) becomes
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For this, we will use complex integration. The integration vari-
able is now called a complex variable z=x+iy rather than
real k. Thus, we write equation (A.1) in the complex plane as
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Note that the first integral premsely gives 2mi, as readily
evaluated by complex contour integral. Now the problem is
to evaluate the second integral. However, we can fortunately
find a solution to this problem provided by Arfken (1985,
pp 410-411). Following his derivation except that we move-
off the poles in real axis by letting & — £—iy instead of
&— E+iyin order to obtain the “outgoing wave”, the sec-
ond integral gives
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As a result, the integral (A.2) becomes
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