The Journal of the Korean life insurance medical association
/
v.18
/
pp.117-125
/
1999
암에 의한 보험금 지급의 증가와 관련하여 1996년, 1년 동안 당사에서 암진단보험금 수혜자에 대한 고찰을 통해 다음과 같은 결과를 얻었다. 1. '96년 암진단보험금 지급은 2,720건 발생하였고, 남자 777명(28.6%), 여자 1,943명(71.4%)였다. 2. 남녀별로 40대, 30대, 50대 순으로 암진단보험금이 지급되었으며, 남자에서는 각각 38.6%, 28.8%, 24.2%였고, 여자에서는 각각 31.8%, 30.3%, 26.6%였다. 3. 남자의 경우 위장계통 암이 323명(41.6%), 여자의 경우 생식기계통 암(유방암 포함)이 968명(52.4%)으로 가장 많았다. 4. 장기별 발생률은 남자는 위(27.5%), 간(22.0%), 폐(8.1%), 여자는 유방(21.2%), 위(14.9%), 자궁경부(13.2%)순으로 나타났다. 5. 경과기간별 암진단보험금 지급 양상은 가입 후 1년 이내 25.1%, 1년에서 2년 이하 18.9%, 1년 후 55.9% 발생하였다. 6. 6개월 이내 암진단보험금은 폐암(15.0%), 갑상선암(14.5%), 자궁경암(13.6%), 유방암(13.1%) 순으로 지급되었다. 7. '96년 암진단보험금 수혜자 중 사망은 '98년 10월 현재 805건(29.6%) 발생하였고, 암종류별 사망률은 간암(76.9%), 폐암(74.0%), 위암(36.3%) 순으로 높았다.
The purpose of this study is to design the On-line Insurance Sales Support System using Case-Based Reasoning(CBR). In on-line insurance subscription process, this system provides the personalized insurance payment cases and insurance statistics for customers to entice an insurance subscription. By measuring, specifically, similarities between the user profile and insurance payment cases, it suggests the best insurance payment case which has the highest similarity and reflects the latest in the insurance payment cases. In addition, it serves the insurance statistical information that matches with the attributes of the finally-selected case. These functions can be useful in on-line insurance sales.
Communications for Statistical Applications and Methods
/
v.15
no.4
/
pp.551-562
/
2008
The loss reserve is defined as a provision for an insurer's liability for claims or an insurer's estimate of the amount an individual claim will ultimately cost. For the estimation of the loss reserve, the data which make up the claims in general is represented as run-off triangle. The chain ladder method has known as the most representative one in the estimation of loss reserves based on such run-off triangular data. However, this fails to capture change point in trend. In order to test of structural changes of development factors, we will present the test statistics and procedures. A real data analysis will also be provided.
How would people who buy an insurance policy respond to a low probability risk with a high future cost? Presented with a scenario describing a low probability accident of a chemical plant, participants in four experiments were asked to rate their perception of the risk and also their intention to buy an insurance of a given premium, an insurance, or a ratio insurance. Participants differently responded only to ratio insurance when rating their perception of risk, not to either premium or insurance. The pattern of results in four experiments converged to the conclusion that ratio insurance, an ecologically valid cue, makes people sensitive to the level of risk expressed in low probabilities of an accident. Our results were consistent with the prediction generated by the ecological cue hypothesis which empathizes the importance of frequency over probability in risk perception (Gigerenzer, 2000).
Through case studies for insurance service marketing using artificial intelligence(AI) in the insurtech industry, it investigated how innovative technologies(artificial intelligence, machine learning etc.) are being used in the insurance ecosystems. In particular, through domestic and international case studies, it was examined by Lemonade's service of insurance contracts and getting the indemnity and AI company's service of calculating the compensation through a medical certificate image based on OCR, which brought disruptive innovations using artificial intelligence. As a result of the case analysis, these services have drastically shortened the lead time of insurance contracts and payment through machine learning using numerous customer data based on artificial intelligence. And accurate and reasonable compensation was calculated in the estimation of indemnity, which has a lot of disputes between customers and insurance companies. It was able to increase customer satisfaction and customer value.
A continuous time risk model is considered, where the premium rate is constant and the claims form a compound Poisson process. We assume that an injection is made, which is an immediate increase of the surplus up to level u > 0 (initial level), when the level of the surplus goes below ${\tau}$(0 < ${\tau}$ < u). We derive the formula of the ruin probability of the surplus by establishing an integro-differential equation and show that an explicit formula for the ruin probability can be obtained when the amounts of claims independently follow an exponential distribution.
Journal of the Korea Academia-Industrial cooperation Society
/
v.3
no.4
/
pp.325-332
/
2002
In the process of designing pareto optimal insurance contract, it is necessary to assume that insurance contract conditions are endogenous to build a model. The expected utility, the non-expected utility and the state-dependent utility function can be applied as a insurance decision making principle. The insurance costs may have the linear, convex, and concave ralationship with the indemnity schedule. However, the sunk cost and fixed cost must be recognized. The deductible which decides whether an insurance contract to be a full or partial insurance contract can exist in the forms of straight deductible or diminishing deductible. Indeciding the level of deductible, the types of the insurance and the risks to be insured should be the deciding factors. Especially for recall insurance, there is relatively high chance that the recalling company being bankrupt. Therefore, the possibility of bankrupcy should be the considering factor in deciding the policy limit. The existence of the incomplete market and uninsurable background risk should be understood as restricting conditions of the pareto-optimal insurance contract.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.17
no.4
/
pp.221-228
/
2024
Predicting insurance claims is a key task for insurance companies to manage risks and maintain financial stability. Accurate insurance claim predictions enable insurers to set appropriate premiums, reduce unexpected losses, and improve the quality of customer service. This study aims to enhance the performance of insurance claim prediction models by applying ensemble learning techniques. The predictive performance of models such as Random Forest, Gradient Boosting Machine (GBM), XGBoost, Stacking, and the proposed Dynamic Weighted Ensemble (DWE) model were compared and analyzed. Model performance was evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and the Coefficient of Determination (R2). Experimental results showed that the DWE model outperformed others in terms of evaluation metrics, achieving optimal predictive performance by combining the prediction results of Random Forest, XGBoost, LR, and LightGBM. This study demonstrates that ensemble learning techniques are effective in improving the accuracy of insurance claim predictions and suggests the potential utilization of AI-based predictive models in the insurance industry.
In this paper, a continuous-time risk process in an insurance business is considered, where the premium rate is constant and the claim process forms a compound Poisson process. We say that a ruin occurs if the surplus of the risk process becomes negative. It is practically impossible to calculate analytically the ruin probability because the theoretical formula of the ruin probability contains the recursive convolutions and infinite sum. Hence, many authors have suggested approximation formulas of the ruin probability. We introduce a new approximation formula of the ruin probability which extends the well-known De Vylder's and exponential approximation formulas. We compare our approximation formula with the existing ones and show numerically that our approximation formula gives closer values to the true ruin probability in most cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.