• Title/Summary/Keyword: 보행 제어

Search Result 413, Processing Time 0.025 seconds

Balance Control Scheme of a Biped Robot using Geometrical Information of a Reference Object in an Input Image (영상에 포함된 참고물체의 기하학적 정보를 이용한 이족로봇의 균형제어기법)

  • Park, Sang-Beom;Han, Yeong-Jun;Han, Heon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.253-256
    • /
    • 2007
  • 본 논문은 로봇이 영상을 통해 획득한 특정물체의 기하학적 정보를 이용하여 이족로봇이 안정적으로 보행할 수 있게 하기 위한 균형제어기법을 제안한다. 영상은 핀 홀 카메라 모델을 통해 획득하였으며, 영상에 포함되는 특정물체의 특징성분에 대한 변위와 로봇의 자세와의 상관관계는 핀 홀 카메라 모델을 이용하여 공간좌표계의 특징정보를 평면좌표계의 영상정보에 매칭시킨 후, 특징들의 변위에 따른 로봇 관절 좌표계의 변위를 추정하는 방법으로 구할 수 있었다. 본 논문에서 제안하는 균형제어기법은 별도의 센서없이 카메라만을 이용하여 이족보행 로봇의 균형제어가 가능하다는 장점을 가지며, 소형이족로붓을 이용한 실험을 통해 그 효율성을 검증하였다.

  • PDF

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

Stairs Walking of a Biped Robot (2족 보행 로봇의 계단 보행)

  • 성영휘;안희욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • In this paper, we introduce a case study of developing a miniature humanoid robot which has 16 degrees of freedom, 42 cm heights, and 1.5kg weights. For easy implimentation, the integrated RC-servo motors are adopted as actuators and a digital camera is equipped on its head. So, it can transmit vision data to a remote host computer via wireless modem. The robot can perform staircase walking as well as straight walking and turning to any direction. The user-interface program running on the host computer contains a robot graphic simulator and a motion editor which are used to generate and verify the robot's walking motion. The experimental results show that the robot has various walking capability including straight walking, turning, and stairs walking.

  • PDF

Locomotion Control of Biped Robots with Serially-Linked Parallel Legs (이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어)

  • Yoon, Jung-Han;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.683-693
    • /
    • 2010
  • In this paper, we propose a new parallel mechanism for the legs of biped robots and the control of the robot's locomotion. A leg consists of two 3-DOF parallel platforms linked serially: one is an orientation platform for a thigh and the other is the 3-DOF asymmetric parallel platform for the shank. The desired locomotion trajectory is generated on the basis of the Gravity-Compensated Inverted Pendulum Mode (GCIPM) in the sagittal direction and the Linear Inverted Pendulum Mode (LIPM) in the lateral direction, respectively. In order to simulate the ground reaction force, a 6-DOF elastic pad model is used underneath each of the soles. The performance and effectiveness of the proposed parallel mechanism and locomotion control are shown by the results of computer simulations of a 12-DOF parallel biped robot using $SimMechanics^{(R)}$.

The Study on Applying Ankle Joint Load Variable Lower-Knee Prosthesis to Development of Terrain-Adaptive Above-Knee Prosthesis (노면 적응형 대퇴 의족개발을 위한 발목 관절 부하 가변형 하퇴 의족 적용에 대한 연구)

  • Eom, Su-Hong;Na, Sun-Jong;You, Jung-Hwun;Park, Se-Hoon;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.883-892
    • /
    • 2019
  • This study is the method which is adapted to control ankle joint movement for resolving the problem of gait imbalance in intervals where gait environments are changed and slope walking, as applying terrain-adaptive technique to intelligent above-knee prosthesis. In this development of above-knee prosthesis, to classify the gait modes is essential. For distinguishing the stance phases and the swing phase depending on roads, a machine learning which combines decision tree and random forest from knee angle data and inertial sensor data, is proposed and adapted. By using this method, the ankle movement state of the prosthesis is controlled. This study verifies whether the problem is resolved through butterfly diagram.

Development of Intelligent Walking Assistive Robot Using Stereo Cameras (스테레오 카메라를 이용한 지능형 보행보조로봇의 개발)

  • Park, Min-Jong;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.837-848
    • /
    • 2014
  • This paper describes the development of a walking assistive robot for effective self-rehabilitation for elderly people facing an inconvenience in walking. The main features of the developed robot are enhanced safety and mobility using the baby walker and electric wheelchair mechanisms and an accurate walking tracking control algorithm using potentiometers and stereo cameras. Specifically, a pelvis supporter is designed to prevent the user from falling down and reduce the burden on their legs, and electric motors are used for easy locomotion with low effort. Next, the walking intention and direction of the user are automatically recognized by using potentiometers attached at the pelvis supporter so that the robot can track the user, and the rapidity and accuracy of the tracking were increased by applying a lower-body motion analysis algorithm with stereo cameras. Finally, the user-tracking performance of the developed robot was experimentally verified through stepwise walking assistance experiments.

The Effect of Staggered Pedestrian Crossings at Wide Width Intersections (광폭교차로에서 2단 횡단보도 설치 효과분석)

  • Kim, Dong-Nyong;Hong, Yoo-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.23-35
    • /
    • 2011
  • The pedestrian green time is usually long at wide width intersections. This sometimes causes the increase of delay on the whole intersection because of long cycle length and thus small g/C ratio on some direction. In this paper, to improve these problems, staggered pedestrian crossing was evaluated on the vehicular and pedestrian aspects. The results were gained by using both TRANSYT-7F and VISSIM model. The vehicle control delay of the staggered pedestrian crossing was estimated to be decreasing than that of the general pedestrian crossing by 14.9% to 85.6%. The pedestrian average delay of two pedestrian crossing systems was examined by analytical method and VISSIM. According to the analytical method there was no significant difference between each pedestrian crossing system. The pedestrian delay of staggered pedestrian crossing was from 13.4% to 22.3% than the general pedestrian crossing by VISSIM. In conclusion, the staggered pedestrian crossing was more effective than general pedestrian crossing for both the vehicle and the pedestrian. However this conclusion was resulted from micro simulation where traffic volume condition, v/c, was from 0.8 to 1.1.

Vision-based Mobile Robot Control System (비전 기반의 모바일 로봇 제어 시스템)

  • Chang Jae Sik;Kim Eun Yi;Jang Sang Su;Kim Hang Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.781-783
    • /
    • 2005
  • 본 논문은 손 모양 인식을 이용한 비전 기반의 보행 로봇 제어 시스템을 제안한다. 손의 모양을 인식하기 위해서 움직이는 카메라 영상으로부터 정확한 손의 경계선물 추출하고 추적하는 일이 선행되어야 한다. 따라서 본 논문에서는 민 시프트 방법을 사용한 활성 윤곽선 모델 기반의 추적 방법을 제안한다. 제안된 시스템은 손 추출기, 손 추적기, 손 모양 인식기 그리고 로봇 제어기, 4개의 모들로 구성된다. 손 추출기는 영상에서 미리 정의된 손의 모양을 가지는 피부색 영역을 추출한다. 추출된 손의 추적은 활성 윤관선 모델과 민 시프트 방법을 사용하여 실행된다. 그 후 Hue moments를 사용하여 추적된 손의 모양을 인식한다. 제안된 방법을 평가하기 위해서 본 논문에서는 2족 보행 로봇 KHR-1에 제안된 방법을 적용 한다.

  • PDF

Slope Detecting and Walking Algorithm of a Quadruped Robot Using Contact Forces (접촉 반력을 이용한 4 족 보행로봇의 경사면 감지 및 보행 알고리즘)

  • Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.138-147
    • /
    • 1999
  • For autonomous navigation, a legged robot should be able to walk over irregular terrain and adapt itself to variation of supporting surface. Walking through slope is one of the typical tasks for such case. Robot needs not only to change foot trajectory but also to adjust its configuration to the slope angle for maintaining stability against gravity. This paper suggests such adaptation algorithm for stable walking which uses feedback of reaction forces at feet. Adjusting algorithm of foot trajectory was studied with the estimated angel of slope without visual feedback. A concept of virtual slope angle was introduced to adjust body configuration against slope change of the supporting terrain. Regeneration of foot trajectory also used this concept for maintaining its stable walking against unexpected landing point.

  • PDF