• Title/Summary/Keyword: 보의 편심효과

Search Result 16, Processing Time 0.026 seconds

Efficient Seismic Analysis of Building Structures with Eccentric Beams (보의 편심효과를 고려한 건축구조물의 효율적인 지진해석)

  • 안상경;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.203-211
    • /
    • 2001
  • 고층구조물의 해석에 사용되는 ETABS와 같은 상용프로그램은 해석의 단순화를 위하여 강막가정을 사용하게 된다. 이와 같은 강막가정은 일반적으로 바닥판의 휨 강성과 보의 편심효과를 무시하게 된다. 이러한 가정은 골조구조물의 정적해석에 대해서는 정당한 결과를 얻을 수 있으나 동적해석의 경우에는 바닥판의 휨 강성과 보의 편심효과가 구조물의 횡 방향 거동에 주요한 영향을 미치게 된다. 그러나 바닥판의 영향과 보의 편심효과를 고려하기 위해서는 유한요소의 특성상 바닥판과 보를 여러 개의 요소로 나누어야 하며, 이로 인하여 해석과 구조물의 모형화에 많은 시간이 소요되는 단점이 발생하게 된다. 본 논문에서는 이러한 단점을 보완하기 위하여 부분구조기법과 대형요소를 사용한 효율적인 모형화 방법에 대하여 연구하였다. 또한 최종적으로 각 층에 대하여 강막가정을 적용하여 층 당 3개의 자유도만을 고려하는 막대모델을 제안하였다. 본 논문에서는 제안한 모형화기법의 정당성을 검토하기 위하여 구조물의 응답을 비교하였다.

  • PDF

Load-carrying Capacity of Thermal Prestressed Steel Beam with Eccentric Bracket (편심 브라켓 설치 온도프리스트레싱 강재보의 하중저항 성능)

  • Kim, Sang-Hyo;Jung, Chi-Young;Choi, Kyu-Tae;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • This study evaluates the load-carrying capacity of a thermal prestressed steel beam with an eccentric bracket. The steel beam that is proposed in this study has an eccentrically installed cover plate through application of the eccentric bracket. The eccentric bracket helps the steel beam achieve greater sectional stiffness and more efficiently induces prestress. A material non-linear characteristic applied finite element analysis was also conducted to check the validity of the experiments. The results of this study showed that the structural stiffness, yield load, and ultimate strength of the TPSM-applied steel beam with the eccentric bracket increased due to the eccentricity of the cover plate.

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(2) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(2))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Bae, Kyu-Woong;Oh, Young-Suk;Moon, Jung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.603-610
    • /
    • 2006
  • The external unbonded strengthening offers advantages in speed and simplicity of installation over other strengthening techniques. Unlike externally bonded steel plate or carbon fiber sheet, surface preparation of the concrete for installation of high-tension bar is not required and installation is not affected by environmental conditions. Anchoring pin or anchoring plate are installed at the end of beam to connect the high-tension bar to concrete beam. The deviator are used in order that supplementary external bars would follow the curvature of the tested beam. A set often laboratory tests on reinforced concrete beam strengthened using the technique are reported. The main test parameters are the section area of strengthening bar, the depth of deviator and the number of deviators. The paper provides a general description of structural behavior of beams strengthened using the technique. The test result of strengthened beam are compared with those from a reference specimen. It is shown that the reinforcing technique can provide greater strength enhancements to unstrengthened beam and that the provision of deviator enhances efficiency. The ultimate moment of specimen with two deviators was higher than that of specimens with one deviator. It is also shown that the external bars enhance strength of beams in shear.

Ultimate Behavior of Steel Beam Strengthened with External Tendonand Cylindrical Anchorage (원통형 정착구를 사용하고 외부 긴장재로 보강된 강재보의 극한거동)

  • Choe, Dong-Ho;Jeong, Sang-Hwan;Jung, Jae-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • This paper examines experimentally the ultimate behavior of I-type steel beam strengthened with external tendon and cylindrical anchorage and analyzes the strengthening effect on the parameters such as initial tendon force, eccentricity, number of strands, and strand areas. The experiment demonstrated that increasing the number of strands, strand areas and eccentricity is more effective than increasing initial tendon force. The proposed cylindrical anchorage system has advantages in applying these parameters. The results showed that the cylindrical anchorage system is efficient and applicable to strengthen steel beam.

Buckling Behavior of I-Beam with the Elastic Support (탄성 경계를 고려한 I형보의 좌굴 거동)

  • Kang, Young Jong;Lee, Gyu Sei;Lim, Nam Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.201-212
    • /
    • 1999
  • A beam supported by a flexible elastic support is commonly used as structural elements, e.g., braced beam, railway track, etc. The elastic support can be located in arbitrary point in the cross-section. This paper investigates the effects of support eccentricity on the elastic buckling of beams with elastic supports. The effects of stiffness of the elastic support are also studied. A beam element with elastic supports and the analysis program are developed for elastic buckling analysis using finite element formulation. The elastic support is modeled by elastic spring element. Using the offset technique, the eccentricity of support is taken into account. A beam element having 14 degrees of freedom including the warping degree of freedom is used. Various numerical example analyses show that the present formulation and analysis program accurately and effectively compute the buckling load and mode of beams with elastic supports.

  • PDF

Development of Analysis Program for PSC Beams with Unbonded External Tendons (외부 비부착 강선을 갖는 PSC보의 해석프로그램 개발)

  • Kwak, Hyo-Gyoung;Son, Je-Kuk;Kim, Sun-Yong;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.247-260
    • /
    • 2006
  • In this paper, an analytical method which can describe the structural behavior of prestressed concrete (PSC) bridges reinforced with the unbonded external tendon is developed. Since the unbonded external tendon is directly installed to the deviators while maintaining a straight configuration, it has a different deformation field from that of concrete and accompanies the secondary effect caused by the change of the primary eccentricity between concrete and external tendon. In advance, the friction slip at the deviators is also taken into consideration on the basis of the force equilibrium between the friction force and the driving force. Through correlation studies between experimental data and analytical results, it is verified that the proposed numerical model can effectively predict the structural behavior of PSC beam bridges with comparative precision.

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

외부가압 공기윤활 저어널베어링의 안정성에 관한 해석

  • 임종락;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.11a
    • /
    • pp.75-78
    • /
    • 1987
  • 저어널베어링으로 지지되고 있는 축 및 베어링 시스템에서 축이 고속으로 회전할 때, 어느 회전수 이상에서 시스템의 안정성이 깨어져 축의 진동진폭이 갑자기 커지는 Self-excited whirl이라 불리우는 불안정 현상이 존재한다. 따라서 고속회전체에 적용되는 공기윤활 저어널베어링에 있어서 안정성 문제는 설계 및 운전에 고려되어야 하는 지배적 요인 중의 하나가 된다. Lund, Fleming과 Cunningham, Mori 들은 외부가압형 공기윤활 저어널베어링의 안정성을 이론적으로 해석하였으며 Pincus는 Self-acting형 공기베어링에서 편심율이 작은 경우 2-Lobe 베어링이나 3-Lobe 베어링이 원형베어링보다 강성도와 감쇠력이 더 크므로 안정성이 더 좋을 것이라고 정성적으로 예측했다. 그러나 외부가압 공기윤활 저어널베어링의 안정성에 비원형 베어링의 유효성은 김 두환, 김 금모, 박 종포 등에 의하여 실험적으로 제시되었다. 따라서 본 연구는 외부가압형 공기윤활 저어널베어링에서 Multi-lobe 형상의 베어링이 축 및 베어링 스스템의 안정성에 미치는 효과를 원형의 경우와 비교하여 이론적으로 해석하여 Multi-lobe베어링의 유효성을 보이고 이에 적용 가능한 Programing을 하여 몇가지 경우에 대하여 계산을 하고자 한다.

  • PDF

The Composite Behaviors of Fabricated Concrete Deck Simple Bridges (바닥판조립식 단순보교량의 합성거동에 관한 연구)

  • 구민세;장성수;윤우현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.525-535
    • /
    • 1999
  • In this study, a new method of fabricated concrete deck bridge construction is proposed. This paper details the method in which concrete multi-girders and fabricated concrete decks are rested on the upper flange of the girder and the female to female type sheat-key is formed to connect girder and deck. The finite element analysis is performed to verify the accuracy of the structural behaviors of the fabricated concrete deck bridge by comparing with experimental results. The first task performed is the analysis of the equilibrium of the member force occurring between the deck and the girder. After verifying equilibrium of the member force determined by the finite element analysis, this process is applied to the analysis of maximum member force as the position of design load. This task is utilized to determine the safety of each member according to the same scale finite element model. The final process in this study is to compare the deflection of girders used in experiment with that of the same scale finite element model to verify the strength of fabricated cincrete deck bridge. By this comparison, it is shown that the behavior of the fabricated concrete deck bridge is almost same as the finite element analysis. The second task is to analyze the load distribution effect according to the number of diaphragms and the composite effect due to the cinnection of the deck and girder by the finite element analysis. From the results of second task, it is found that the load distribution effect is not related to the number of diaphragms in case of the central loading, but is related to the number of diaphragms for eccentric loading. Analysis of the load distribution indicates that the effective number of diaphragm is three. It is also shown that the maximum deflection is decreased to almost one half due to the composite action of the deck and girder.

  • PDF