• Title/Summary/Keyword: 보안Recovery

Search Result 119, Processing Time 0.027 seconds

TT&C security algorithm of satellite based on CBC-MAC (CBC-MAC 기반의 위성 관제 신호 보호 알고리즘)

  • 곽원숙;조정훈;홍진근;박종욱;김성조;윤장홍;이상학;황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6B
    • /
    • pp.616-624
    • /
    • 2002
  • In satellite communication, which use the satellite, the protection of TT&C channel which controls the position, performance, and operation is required. In this thesis, we analyzed the weakness of authentication algorithm which is used for protection of TT&C generation and operation. Also, we proposed the authentication algorithm which complements key recovery attack structurely without increasing additional computational amount and verified its performance. The proposed authentication algorithm can satisfy Rivest's recommendation by increasing the computational complexity from $2^{55}$ operations to $2^{111}$ operations. In addition, it can be applied to the existing satellite system because the length of TT&C data and message authentication codes used for the input of authentication algorithm are unchanged.

A Study of Trace for Data Wiping Tools (완전삭제 도구 사용 흔적에 관한 연구)

  • Kim, Yeon-Soo;Bang, Je-Wan;Kim, Jin-Kook;Lee, Sang-Jin
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.159-164
    • /
    • 2010
  • The data wiping is a technique which perfectly deletes data in a storage to prevent data recovery. Currently, management of stored data is important because of increasing an accident of personal information leakage. Especially, if you need to discard data contained personal information, using a wiping tool which permanently deletes data to prevent unnecessary personal information leakage. The data wiping is also used for data security and privacy protection. However the data wiping can be used intentionally destruction of evidence. This intentionally destruction of evidence is important clues of forensic investigation. This paper demonstrates the methods for detecting the usage of wiping tools in digital forensic investigation.

A Study on Data Storage and Recovery in Hadoop Environment (하둡 환경에 적합한 데이터 저장 및 복원 기법에 관한 연구)

  • Kim, Su-Hyun;Lee, Im-Yeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.12
    • /
    • pp.569-576
    • /
    • 2013
  • Cloud computing has been receiving increasing attention recently. Despite this attention, security is the main problem that still needs to be addressed for cloud computing. In general, a cloud computing environment protects data by using distributed servers for data storage. When the amount of data is too high, however, different pieces of a secret key (if used) may be divided among hundreds of distributed servers. Thus, the management of a distributed server may be very difficult simply in terms of its authentication, encryption, and decryption processes, which incur vast overheads. In this paper, we proposed a efficiently data storage and recovery scheme using XOR and RAID in Hadoop environment.

An Access Code Key for Verification Service Model on the Blockchain in a Door Security (출입문 보안을 위한 블록체인 기반의 출입코드키 검증 서비스 모델)

  • Hong, Ki Hyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1416-1432
    • /
    • 2022
  • The access control system is a system that allows users to selectively enter the building by granting an access key to the user for security. Access keys with weak security are easily exposed to attackers and cannot properly perform the role that authenticates users. Access code keys should be protected from forgery or spoofing. For this reason, access key verification service models is important in security. However, most models manage all access keys on one central server. This method not only interrupts all services due to server errors, but also risks forgery and spoofing in the process of transmitting access keys. Therefore, blockchain algorithms are used to reduce this risk. This paper proposes a blockchain-based access key verification service model that used distributed stored blockchain gateways on storing access keys and authenticates the user's identity based on them. To evaluate the performance of this model, an experiment was conducted to confirm the performance of the access key forgery recovery rate and the blockchain network performance. As a result, the proposed method is 100% forgery recovery rate, and the registration and verification process is evaluated at 387.58 TPS and 136.66 TPS.

A Verification of Replicated Operation In P2P Computing (P2P 컴퓨팅에서 중복 수행 결과의 정확성 검증 기법)

  • Park, Chan Yeol
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2004
  • Internet-based P2P computing with independent machines suffers from frequent disconnections and security threats caused by leaving, failure, network diversity, or anonymity of participated machines. Replication schemes of shared resources are used for solving these issues in many studies and implementations. We propose an operational replication scheme in P2P computing to share computing resources, and the scheme verifies the correctness of operation against faults and security threats. This verifications are carried out periodically on replicated and dependent working units without global message exchanges over the whole system. The verified working units are treated as checkpoints, and thus they could be put to practical use for fault-tolerance with rollback recovery.

  • PDF

A Study on Secure Routing using Secure Zone and Nodes Authentication in Wireless Ad Hoc Network (Wireless Ad Hoc Network에서 보안 영역과 노드 인증을 이용한 보안 라우팅 기법에 관한 연구)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.161-169
    • /
    • 2014
  • Wireless Ad Hoc Network is suitable for emergency situations such as and emergency, disaster recovery and war. That is, it has a characteristic that can build a network and use without help of any infrastructure. However, this characteristic is providing a cause of many security threats. In particular, routing attack is not applied the existing routing methods as it is and it is difficult to determine accurately whether nodes that participate in routing is malicious or not. The appropriate measure for this is necessary. In this paper, we propose a secure routing technique through a zone architecture-based node authentication in order to provide efficient routing between nodes. ZH node is elected for trust evaluation of the member nodes within each zone. The elected ZH node issues a certification of the member nodes and stores the information in ZMTT. The routing involvement of malicious nodes is blocked by limiting the transfer of data in the nodes which are not issued the certification. The superior performance of the proposed technique is confirmed through experiments.

Group Key Management using (2,4)-Tree ((2,4)-트리를 이용한 그룹키 관리)

  • 조태남;이상호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.4
    • /
    • pp.77-89
    • /
    • 2001
  • Recently, with the explosive growth of communication technologies, group oriented services such as teleconference and multi-player game are increasing. Access control to information is handled by secret communications with group keys shared among members, and efficient updating of group keys is vital to such secret communications of large and dynamic groups. In this paper, we employ (2,4)-tree as a key tree, which is one of height balanced trees, to reduce the number of key updates caused by join or leave of members. Especially, we use CBT(Core Based Tree) to gather network configurations of group members and reflect this information to key tree structure to update group keys efficiently when splitting or merging of subgroups occurs by network failure or recovery.

A Study on Coexist with COVID-19 Teaching Methods for Learners (학습자 대상 위드 코로나 시대의 교수법 고찰)

  • Jung, Ae-ri;Cho, Young-bok
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.287-294
    • /
    • 2022
  • While online research is in full swing due to the COVID-19 pandemic, the Ministry of Education announced a plan to gradually switch face-to-face classes along with 'recovery of daily life'. As such, there is a need for an agreement that appropriately considers the position of promoting face-to-face classes, the position of studying online classes, and the position of students taking classes. Therefore, this paper intends to examine the teaching method of Coexist with COVID-19 centered on the student's position as the host of the class. It is expected that this study will be able to suggest directions for innovative teaching methods that reflect the considerations of teachers' teaching methods and analyze the needs of learners who are consumers.

Analysis of Information Distribution Capability of the Army TIGER Corps Multilayer Integrated Communication Network (Army TIGER 군단 다계층 통합 전술통신망의 정보유통량 분석)

  • Junseob Kim;Sangjun Park;Yiju You;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.175-180
    • /
    • 2024
  • Future warfare is evolving with advanced science and technology, introducing a variety of unmanned and manned combat systems. These systems generate and exchange massive amounts of information, challenging current tactical communication systems as a foundation for future communication infrastructure. To analyze the information distribution capability of the Army TIGER corps, this paper examines four scenarios: standalone ground network operation, integrated network operation, load distribution, and error recovery. Utilizing M&S results, we highlight the potential of a multilayer integrated command and control network, incorporating ground, air, and space networks, to enhance the reliability and stability of the overall communication network.

Microarchitectural Defense and Recovery Against Buffer Overflow Attacks (버퍼 오버플로우 공격에 대한 마이크로구조적 방어 및 복구 기법)

  • Choi, Lynn;Shin, Yong;Lee, Sang-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.178-192
    • /
    • 2006
  • The buffer overflow attack is the single most dominant and lethal form of security exploits as evidenced by recent worm outbreaks such as Code Red and SQL Stammer. In this paper, we propose microarchitectural techniques that can detect and recover from such malicious code attacks. The idea is that the buffer overflow attacks usually exhibit abnormal behaviors in the system. This kind of unusual signs can be easily detected by checking the safety of memory references at runtime, avoiding the potential data or control corruptions made by such attacks. Both the hardware cost and the performance penalty of enforcing the safety guards are negligible. In addition, we propose a more aggressive technique called corruption recovery buffer (CRB), which can further increase the level of security. Combined with the safety guards, the CRB can be used to save suspicious writes made by an attack and can restore the original architecture state before the attack. By performing detailed execution-driven simulations on the programs selected from SPEC CPU2000 benchmark, we evaluate the effectiveness of the proposed microarchitectural techniques. Experimental data shows that enforcing a single safety guard can reduce the number of system failures substantially by protecting the stack against return address corruptions made by the attacks. Furthermore, a small 1KB CRB can nullify additional data corruptions made by stack smashing attacks with only less than 2% performance penalty.