• Title/Summary/Keyword: 보강형

Search Result 990, Processing Time 0.036 seconds

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

The Field Applicability of Road Pavement Layer with Grid Typed Reinforcement and Dispersive Fiber (그리드형 보강재와 분산성 섬유를 활용한 도로 포장층의 현장 적용 특성)

  • Park, Ju-Won;Kim, Hun-Kyum;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • This study analyzed the field applicability through the combination of environment-friendly grid-typed reinforcements and pre-mixed fiber with filler. The film of the grid-typed reinforcement is made by recycled PE resin. And, Ascon fiber is obtained the dispersion by pre-mixing of filler. To be able to recognize in advance the various circumstances that could arise in the construction of the road pavement layer, we conducted a basic field application test of the (Mock Up) pavement layer. As a result, it was found that the pavement with environment-friendly grid-typed reinforcement and dispersive fiber construction had improved strength, stress, and rutting resistance. It is consistent with the strength and stress results of the actual test of the mock up specimen. It is expected to perform an effective role in the safety as well as the use of environment-friendly fibers in actual construction.

A Study on the Enhancement of Fire Resistance Function in Primary Structure Department of Building Type Traditional Market (건물형 전통시장 화재발생시 피난안전성 확보를 위한 규모별 주요구조부 내화보강 연구)

  • Jang, Hye-Min;Hwang, Jung-Ha
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.87-95
    • /
    • 2020
  • This study evaluates the safety of an asylum through a fire simulation of building Type traditional markets. We derive the building's indoor temperature, use the observed variation in temperature gradient to calculate the temperature of the main structure, and finally compares the time required to attain the limit temperature of the structure its time of escape. To ensure improved security of the asylum, the government has proposed a fire-resistance improvement plan for the major structural parts of buildings are not safe with thickness of 0.01 m and 0.035 m. F.ire-resistance reinforcement for small - and medium-sized vehicles is more than 0.025 m, in thickness; moreover safety can be ensured for medium and large-sized vehicles fire using fire resistant reinforcement of over 0.035 m. Accordingly, in order to ensure the safety of an asylum, fire-resistant reinforcement measures may be considered.

Behavior of grouted bolts in consideration of seep age forces (침투수력을 고려한 전면접착형 록볼트의 거동연구)

  • Lee, In-Mo;Kim, Kyung-Hwa;Shin, Jong-Ho;Nam, Seok-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • In a NATM tunnel, fully grouted bolts are widely used as part of supporting system. Grouted bolts play an important role not as to take some parts of load acting on the tunnel lining but as to reinforce the ground adjacent the tunnel. In conjunction with tunnel construction, the presence of groundwater may pose a number of difficulties. With respect to tunnel design, influences of groundwater on tunnel behavior have been considered in many aspects. However, the effect on grouted bolts has been rarely investigated. In this study, the behavior of grouted bolts, which are affected by the seepage forces, was examined. In order to investigate the effects of seepage forces, the theoretical solutions for a drained condition were proposed. Based on the theoretical solutions, ground reaction curves considering seepage forces were obtained. By comparing the ground reaction curves supported by grouted bolts with those for the unsupported cases, the effect of reinforcement was evaluated. Finally, through comparison between supported ground react ion curve s in the drained condition and those in the case of groundwater flow, it was observed that the grout ed bolts are more structurely beneficial when the seepage occurs towards the tunnel than when there is no groundwater flow.

  • PDF

A Study on Behavior Characteristics of Reinforcement Zone of Block Type Mechanically Stabilized E arth Wall by Field Measurement in Curved Section (현장 계측을 통한 블록형 보강토옹벽 곡선부 보강 영역의 거동 특성 연구)

  • Lee, So-Yeon;Kim, Young-Je;Oh, Dong-Wook;Lee, Yong-Joo;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.23-36
    • /
    • 2019
  • In this paper, field measurement of the Block Type Mechanically Stabilized Earth (MSE) wall curved section was performed, and the reinforced area of the curved part is studied through the result. MSE method has been applied to various fields because of easy construction and excellent economic efficiency, so that it can be easily access in our life. However due to lack of compaction and stress concentration phenomenon, cracks and collapse occur in the curve of MSE wall, which is important for safety. The cause of collapse is lack of research on curved section, lack of design criteria, lack of construction due to economical efficiency and shortening of construction period, insufficient compaction space. In this study, therefore, it was examined the existing design and construction standards, analyzed the cause through accident examples of the curved section of the Block Type MSE wall. As a result, the horizontal displacement of the curved section was 90% higher than that of the straight section and 60% higher than that of the concave section. In the case of the convex section in the curved section reinforcement region, the maximum displacement is shown in the H/2 section in the horizontal direction from the center of the MSE wall, and the range of influence from H is shown. In the case of the concave section, the maximum displacement is shown in the center, The minimum displacement was confirmed in H/4 section in the horizontal direction from the center of the MSE wall. As a basic study on the reinforcement area rehabilitation through the actual construction of block type MSE wall, the behaviors of the straight part and the curved part were compared and analyzed. And analyzed the reinforced area in order to reduce the damage of the stress concentration phenomenon and secure the safety.

Acoustic Radiation Analysis of Stiffened Cylindrical shell and Vibrational Velocity by FFT (보강 원통형 몰수체의 음향방사 해석과 FFT에 의한 진동 해석)

  • 배수룡;이헌곤;홍진숙
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.128-133
    • /
    • 1993
  • 본 연구에서는 보강 원통쉘에 대하여 주위 유체의 영향을 고려하여 진동 및 음향방사를 해석하였다. 원통셀의 운동방정식은 Donnell 이론을 적용하였으 며, Contour 적분을 풀지 않고 FFT 알고리즘(Fast Fourier Transform Algorithm)을 이용하여 원통쉘의 진동을 계산하였다. 현재까지의 방사패턴에 관한 연구는 주로 원주 방향에 집중되어 왔으나, 보강 원통쉘의 방사패턴은 원추파 모형에 가까우므로 극좌표 .theta. 방향에 대한 음향방사 패턴에 관한 연구가 이루어져야 한다. 그러므로, 본 연구에서는 극좌표에 관한 방사패턴 에 관하여 주로 고찰하였다.

  • PDF

Manufacturing and Assesment of Composite Type Sewing Threads for Geotextile Seaming (Geotextiles 봉합용 복합 재봉사의 제조 및 평가)

  • 전한용;장경호;김홍관;박용준
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.420-423
    • /
    • 2001
  • 토목합성재료(Geosynthetics) 중 직포매트는 i) 분리, ii) 보강/보호 등의 기능을 가지고 있으며 연약지반 보강, 도로포장, 간척지 지반 공사 및 해안지역 LNG 저장고 공사, 폐기물 매립지의 사면 및 저면 보호재 등 기초 보강재료로 널리 이용되고 있다. 그러나 현재 토목건설공사에 사용되고 있는 직포매트용 봉합사는 타이어 코드 제조용 폴리에스테르 고강력사이며, 봉합할 경우 원통형 관입에 의한 인장신도가 커지게 되어 변형에 의한 파괴가 쉽게발생한다. (중략)

  • PDF

Earthquake-Resistant Capacity of RC Columns Retrofitted by Fiber-Steel Composite Plate (복합판으로 보강된 철근콘크리트 기둥의 내진성능연구)

  • Park Tae-Man;Park Seong-Min;Hong Hyeok-Jun;Kang Gyeong-Soo;Yoon Jeong-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.113-120
    • /
    • 2005
  • The purpose of this study is to investigate the strength and ductility improvement of columns retrofitted by steel-fiber composite plate. Test specimens strengthened by three different materials - steel plate(SP), carbon fiber sheet(CF) and fiber-steel composite plate(CP) - were tested under cyclic lateral load with a constant axial load equal to $20\%$ of the axial compression capacity. The structural capacity of composite plate was good or better than that of other retrofitting materials. Test results from all retrofitted specimens showed that considerably higher retrofitting amount was required for strength enhancement. The ductility of retrofitted columns by composite plate was fairly improved. Also, energy ductility ratio was more effective than displacement ductility ratio for ductility estimation of retrofitted column.

Model Tests on the Reinforcement Effect of Unattached Strips to the Cantilever Retaining Wall (비정착 띠보강재의 역T형 옹벽 보강효과에 관한 모형실험)

  • Han, Gyeong-Je;Kim, Un-Yeong;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.31-40
    • /
    • 1998
  • To verify the reinforcing effect of the strips which are inserted in the backfill, but not connected to the face wall, model tests are executed. As the reinforcing effect is expected to reduce the active thrust acting on the retaining wall, test programmes included the measurements of the thrust. As a result. it is ascertained that the active thrusts are reduced by as much as 50%. Besides, efficient arrangement and the optimum length of the strips are verified. And the the number of reinforcing strips are increased, are close to the Rankine's hypothesis.

  • PDF

Evaluation on Strengthening Capacities and Rebound Rate of Structures with Sprayed FRP (분사식 FRP에 의한 구조물의 보강 성능 및 반발률 평가)

  • Han, Seung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.193-202
    • /
    • 2008
  • This paper investigates experimentally the confining effect, strengthening capacity and rebound rate of sprayed Fiber-Reinforced-Polymer (SFRP). From the method, resin and chopped fibers are sprayed separately from the nozzle with high pressure, and then they are attached to the concrete surface, so structure could be repaired. To evaluate the strengthening effect of sprayed FRP, cylindrical specimens and beam specimens were strengthening with SFRP. As main material of FRP, glass fiber and polyester resin are used. To investigate the optimum condition of sprayed FRP, the effects of fiber length, coating thickness, fiber volume ratio and concrete strength were examined. Capacities of sprayed FRP method were also compared to the FRP sheet method. In case of the sprayed FRP, rebound rate is important parameter considering economical efficiency and constructibility, so rebound rate of was discussed. From the test results, optimum conditions of sprayed FRP were determined. SFRP method showed superior strengthening capacities than FRP sheet method.