• Title/Summary/Keyword: 보강상세

Search Result 245, Processing Time 0.026 seconds

Proposals of Reliable Shapes of Supplementary V-ties for Section Jacketing Method of Columns (기둥의 단면 확대보강을 위한 V-타이 보조 띠철근의 형상 제시)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Sim, Jae-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.99-107
    • /
    • 2018
  • The objective of the present study is to propose a reliable shape of supplementary V-ties in the section jacketing approach for seismic strengthening of reinforced concrete columns. A total of 24 pull-out specimens were prepared. The test parameters selected with regard to bond strength of V-ties were the shape of V-ties, embedment length of V-tie legs, and compressive strength of concrete. The measured bond strength of V-ties with different shapes were compared with that of the conventional V-ties and predictions using CEB-FIP equation. Ultimately, V-ties with pressed end-details at their legs could be recommended for the supplementary lateral reinforcement of strengthening columns with jacketing thickness less than the embedment length [= max (75mm, $6d_b$)] of conventional V-ties, where $d_b$ is the diameter of the reinforcing bar used for V-ties.

Experimental Study on the Behavior of Hybrid Beam-Column Joints Consisted of Reinforced Concrete Column and Steel Beam (철근콘크리트 기둥 및 철골보로 구성된 복합구조의 접합분 거동에 관한 실험적 연구)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.297-304
    • /
    • 2003
  • This paper presents the test results of RCS(Reinforced Concrete Steel) beam-column joint with various types of transverse reinforcements such as small-column-type transverse reinforcements, four-piece ㄱ-shape assembled hoops and four-piece ㄱ-shape welded hoops. Five interior beam-column joint specimens were tested to examine the seismic performance and the shear strengths. From the test results, it was found that all the specimens sustained their strength at large levels of story drift(${\theta}$=0.035) without significant loss of strength and stiffness. Therefore it was concluded that the seismic performance and shear strength of the proposed RCS joint are at least the same as those of the specimen with conventional reinforcing details. Also, the contribution of the outer panel to the shear strength of the joint should be evaluated by the compression strut mechanism rather than compression field mechanism.

Tensile Behavior of Stud Bolt Connections (스터드 볼트 접합부의 인장 거동에 관한 연구)

  • 이태석;김승훈;서수연;이리형;홍원기
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.321-328
    • /
    • 2001
  • This paper presents the tensile behavior of stud connections installed between reinforced concrete and steel members. Eight specimens are tested to verify the factors influencing the tensile behavior of the connection. Major variables considered in the test are the reinforcement ratios of concrete member and connection details. Test results indicate that the reinforcing bars near stud bolts contribute to the increase of the tensile strength of the member as well as to the reduction of brittle failure. It is shown that C-type or U-type connection has relatively high ductility. From the evaluation on the tensile strength of test results including those of peformed by previous researchers, it was shown CCD (Concrete Capacity Design) method overestimated the strength. In this paper, the reduction factor of 0.75 ø instead of ø is suggested for design purpose of the stud connection.

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Evaluation of Axial Behavior of Columns Strengthened with Different Transverse Reinforcements in Jacket Section (확대단면에서의 띠철근 배근 방법에 따른 보강 기둥의 중심 축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • The present study evaluated the effective arrangement approach of transverse reinforcement in the jacket section for seismic strengthening of reinforced concrete columns. To simulate the full-scale columns, the section dimensions were determined as $450{\times}450mm$ for non-seismic existing columns and $750{\times}750mm$ for section enlargement strengthening columns. Over-lapped channel-shape bars and prefabricated bar units were proposed for closed-hoops in the jacket section, and conventional cross-ties anchored into existing columns and V-ties were considered for the supplementary ties. Test results showed that the axial capacity of the existing column and section enlargement columns with over-lapped channel-shape hoops was similar to the nominal strength calculated using ACI 318-14 procedure whereas the section enlargement column with prefabricated bar units possessed 1.25 times higher axial capacity than the nominal prediction. Furthermore, the axial ductility ratio of the section enlargement column with prefabricated bar unit was 139% higher than that of the existing column despite the potential size effect on ductility of concrete. Thus, it can be concluded that the developed prefabricated bar unit technique is practically useful for preventing the premature buckling of longitudinal reinforcement and confining core concrete in the section enlargement strengthening columns.

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

Pseudo-Dynamic Test for the Bridges Retrofitted with Laminated Rubber Bearings (적층고무받침으로 내진보강된 교량의 유사동적실험)

  • Kwak, Im-Jong;Cho, Chang-Beck;Han, Kyoung-Bong;Kim, Young-Jin;Kwak, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.43-50
    • /
    • 2005
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. For the highway bridges of which bearings are worn and dysfunctional, the validity of seismic retrofit method using laminated rubber bearings was discussed in this study. Real scale RC pier specimens without seismic details were constructed. And then, Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to these specimens. Through pseudo dynamic test method, dynamic behavior of these RC piers under earthquake was simulated and compared. From the test results, proposed seismic retrofit method was found to be valid.

An Experimental Investigation on Strengthening Details of RC Beams Strengthened with NSM Reinforcements (NSM 보강 RC 보의 보강상세에 대한 실험)

  • Jung, Woo-Tai;Park, Jong-Sup;You, Young-Jun;Park, Young-Hwan;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.99-102
    • /
    • 2005
  • This paper presents test results on strengthening details of reinforced concrete beams strengthened with near-surface mounted(NSM) CFRP rod and strip. A total of 8 specimens have been tested. The specimens can be classified into the same strengthening area group and the different spacing group. For the same strengthening area group, experimental results revealed that specimens strengthened with NSM CFRP strips improved the flexural capacity of RC beams. For the different spacing group, the flexural capacity of RC beams was almost the same, but it was different in case of NSM CFRP rods.

  • PDF

A Study on the Fatigue Crack at Welded Joint for Steel Plate Girder Railway Bridge (강철도 플레이트거더교 용접이음부 피로균열의 평가에 관한 연구)

  • Park, Jin-Eun;Kyung, Kab-Soo;Lee, Sung-Jin;Jo, Yun-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.306-309
    • /
    • 2010
  • 강철도 플레이트거더교의 경우 일반적으로 레일의 폭보다 거더 사이의 폭이 넓기 때문에 거더에 편심이 작용하게 된다. 이러한 편심 영향으로 거더 내측 상부플랜지에 휨변형이 일어나게 되어, 상부플랜지와 수직보강재 용접이음부에 반복하중에 의한 피로균열이 발생되고 있는 것으로 보고되고 있다. 본 연구에서는 공용중인 강철도 플레이트거더교를 대상교량으로 하여 공용하중에 대한 구조해석을 실시하였다. 대상교량에 대한 현장계측을 기초로 구조모델링을 검증하였고, 검증된 구조모델링을 사용하여 열차하중 하에서의 상부플랜지와 수직보강재 용접연결부에서의 피로균열 보강방안에 대한 구조해석을 실시하였다. 또한 상부플랜지와 수직보강재 용접이음부 상세해석을 통하여 피로균열 발생위치를 확인하고 연결이음부의 적절한 보강방안을 제시하고자 한다.

  • PDF