• Title/Summary/Keyword: 보간 다항식

Search Result 74, Processing Time 0.024 seconds

A Study on The Error Analysis of Integration Operational Metrices by The Lagrange Second Order Interpolation Polvnomial (Lagrange 이차 보간 다항식을 이용한 적분연산 행렬의 오차 해석에 관한 연구)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.55-57
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. In this paper, the accuracy of the Block Pulse series coefficients derived by using the Lagrange second order interpolation polynomial is approved by the mathematical method.

  • PDF

A Study on Nu Authentication Protocol using Secret Key (비밀키를 이용한 새로운 인증 프로토콜에 관한 연구)

  • Cho, Jin;Nam, Gil-Hyun
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.294-304
    • /
    • 1995
  • 컴퓨터 통신망을 이용하여 메세지를 교환하려는 주체의 신분을 확인하고, 메세지 전송시 예상되는 침입자의 도청을 예방하기위해 메세지의 암호화에 필요한 세션키를 분배하는 것이 인증 프로토콜의 목적이다. 본 논문에서는 Li Gong의 다항식 보간법을 이용한 인증 프로토콜중에서 비밀키의 사전 공유와 인증서버의 고신뢰도의 문제점을 해결할 수 있는 새로운 인증 프로토콜을 제안하였으며. 제안된 프로토콜의 정확성은 GNY로직을 이용하여 분석하였다.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.

Numerical Investigation of Transverse Dispersion in Natural Channels (자연하천에서 오염물질의 횡확산에 관한 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.151-162
    • /
    • 1995
  • A two-dimensional stream tube dispersion model is developed to simulate accurately transverse dispersion processes of pollutants in natural channels. Two distinct features of the stream tube dispersion model derived herein are that it employs the transverse cumulative discharge as an independent variable replacing the transverse distance and that it is developed in a natural coordinate system which follows the general direction of the channel flow. In the model studied, Eulerian-Lagrangian method is used to solve the stream tube dispersion equation. The stream tube dispersion equation is decoupled into two components by the operator-splitting approach; one is governing advection and the other is governing dispersion. The advection equation has been solved using the method of characteristics and the results are interpolated onto Eulerian grid on which the dispersion equation is solved by centered difference method. In solving the advection equation, cubic spline interpolating polynomials is used. In the present study, the results of the application of this model to a natural channel are compared with a steady-state flow measurements. Simulation results are in good accordance with measured data.

  • PDF

An Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation (Eulerian-Lagrangian 혼합모형에 의한 종확산 방정식의 수치해법)

  • 전경수;이길성
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.137-148
    • /
    • 1993
  • A hybrid finite difference method for the longitudinal dispersion equation was developed. The method is based on combining the Holly-Preissmann scheme with the fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme. Longitudinal dispersion of an instantaneously-loaded pollutant source was simulated by the model and other characteristics-based numerical methods. Computational results were compared with the exact solution. The present method was free from wiggles regardless of the Courant number, and exactly reproduced the location of the peak concentration. Overall accuracy of the computation increased for smaller value of the weighting factor, $\theta$ of the model. Larger values of $\theta$ overestimated the peak concentration. Smaller Courant number gave better accuracy, in general, but the sensitivity was very low, especially when the value of $\theta$ was small. From comparisons with the hybrid method using the third-degree interpolating polynomial and with split-operator methods, the present method showed the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.246-249
    • /
    • 2007
  • In numerical analysis for phase change material, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be used without modelling. In this study applicability of neural networks in modelling superheated vapor region of water was examined by comparing with the quadratic spline. neural network consists of an input layer with 2 nodes, two hidden layers and an output layer with 3 nodes. Quadratic spline interpoation method was also applied for comparison. Neural network model revealed smaller percentage error to quadratic spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the superheated range of the steam table.

  • PDF

Sensitivity Analysis of Ordinary Kriging Interpolation According to Different Variogram Models (베리오그램 모델 변화에 따른 정규 크리깅 보간법의 민감도분석)

  • Woo, Kwang-Sung;Park, Jin-Hwan;Lee, Hui-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • This paper comprises two specific objectives. The first is to examine the applicability of Ordinary Kriging interpolation(OK) to finite element method that is based on variogram modeling in conjunction with different allowable limits of separation distance. The second is to investigate the accuracy according to theoretical variograms such as polynomial, Gauss, and spherical models. For this purpose, the weighted least square method is applied to obtain the estimated new stress field from the stress data at the Gauss points. The weight factor is determined by experimental and theoretical variograms for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. The validity of the proposed approach has been tested by analyzing two numerical examples. It is noted that the numerical results by Gauss model using 25% allowable limit of separation distance show an excellent agreement with theoretical solutions in literature.

Control Technique of Modem Output Level to improve Frequency Response Equalization of Satellite TX Terminals (위성 단말 송신부의 주파수 응답 평탄도를 향상시키기 위한 모뎀 출력 조절 방법)

  • Cho, Tae-Chong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.129-133
    • /
    • 2019
  • Frequency resource efficiency is important in satellite communication systems. One of the causes of a waste of frequency resource is bad flatness. In the case, flatness of satellite Tx terminals would be worse by ACI and guard band. In order to overcome this problem, this paper proposes a technique for frequency response equalization in satellite Tx terminals. First of all, a general linear polynomial expression which meets least squares of representative measurement data is calculated to interpolate unmeasured data. And then flatness can be adjusted using the polynomial expression. Simulation results illustrate adjusted data have lower peak to peak and standard deviation than original data, and these show that flatness be improved.

Induction of the High Order Calibration Equation of Metal Oxide Semiconductor Gas Sensors (산화물 반도체식 가스센서의 입출력 고차 캘리브레이션 방정식 도출)

  • Park, Gyoutae;Kim, Kangmin;Lee, Hyeonggi;Yoon, Myeongsub
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • In this paper, a measuring circuit is designed through analyzing manufacture specification of the sensor based on MOS. And the best input-output polynomial are induced that really gas sensors are used in gas safety management industrial fields. Response characteristics of a MOS gas sensor is analysed by through sensor's output voltages are measured after standard gases with six kinds of concentrations are manufactured and are injected to the sensor. A lookup table is created by relations of sensor's output voltages by injecting gases with other concentrations. Because data of the formed lookup table are equal interval, a polynomial can be induced of method of approximation function. So the 5th polynomial of input-output for a sensor is defined, coefficients are calculated by using least squares method, and the 5th polynomial is completed for representing characteristics of the sensor. If the proposed polynomial is applied to gas leak detectors, an inverse transformation of polynomial and programing of array codes are recreated. In this research, polynomial is implemented with array types that intervals of values of a lookup table are one-fifth sampled and interpolated. The performance of proposed 5th calibration equation is verified that errors are reduced than a linear expression when tests are performed by measurement of concentrations against injection of standard gases.

Optimization Study of Toom-Cook Algorithm in NIST PQC SABER Utilizing ARM/NEON Processor (ARM/NEON 프로세서를 활용한 NIST PQC SABER에서 Toom-Cook 알고리즘 최적화 구현 연구)

  • Song, JinGyo;Kim, YoungBeom;Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.463-471
    • /
    • 2021
  • Since 2016, National Institute of Standards and Technology (NIST) has been conducting a post quantum cryptography standardization project in preparation for a quantum computing environment. Three rounds are currently in progress, and most of the candidates (5/7) are lattice-based. Lattice-based post quantum cryptography is evaluated to be applicable even in an embedded environment where resources are limited by providing efficient operation processing and appropriate key length. Among them, SABER KEM provides the efficient modulus and Toom-Cook to process polynomial multiplication with computation-intensive tasks. In this paper, we present the optimized implementation of evaluation and interpolation in Toom-Cook algorithm of SABER utilizing ARM/NEON in ARMv8-A platform. In the evaluation process, we propose an efficient interleaving method of ARM/NEON, and in the interpolation process, we introduce an optimized implementation methodology applicable in various embedded environments. As a result, the proposed implementation achieved 3.5 times faster performance in the evaluation process and 5 times faster in the interpolation process than the previous reference implementation.