본 논문에서는 적응형 및 연속적인 부호 거리장을 빠르게 계산하기 위한 새로운 GPU 기반 프레임워크를 제안하고, 이를 활용한 렌더링/충돌처리 관련 사례를 살펴본다. 삼각형 메쉬로부터 구성된 쿼드트리를 GPU 메모리로 전달하고, 이를 활용하여 삼각형에 대한 유클리디안 거리를 각 스레드 별로 병렬 처리함으로써 적응형 격자 공간에서 불연속 없이 연속적인 최단 거리를 찾는다. 이 과정에서 적응형 부호 거리장의 절단면 보기, 특정 위치에서의 거리 값 조회, 실시간 레이트레이싱 및 충돌처리 작업을 빠르고 효율적으로 수행될 수 있는지를 실험을 통해 보여준다. 제안하는 방법을 사용하면 하이폴리곤 메쉬에서도 1초 내외로 빠르게 적응형 부호 거리장을 계산할 수 있기 때문에 강체뿐만 아니라 변형체에서도 충분히 활용될 수 있는 방법이며, 다양한 모델에서도 정확하게 샘플링하고 거리 값을 나타낼 수 있는지 다양한 실험 결과를 통해 알고리즘의 안정성을 보여준다.
GPU는 다수의 워프를 병렬적으로 수행함으로써 레이턴시를 숨기면서 높은 처리량을 제공할 수 있다. 만약 GPU에서 캐쉬에 대한 요청이 미스를 발생시킨다면 하위 메모리로부터 요청한 데이터를 받을 때까지 MSHR(Miss Status Holding Register)을 통해 미스 정보를 추적하고 다른 워프를 수행한다. 최신 GPU에서는 캐쉬 자원에 대한 과도한 요청이 발생한 경우 자원점유 실패가 발생하여 GPU 자원을 충분히 활용할 수 없는 경우가 자주 발생한다. 본 논문에서는 MSHR 자원 부족으로 인해 발생하는 성능 감소를 줄이고자 새로운 워프 스케줄링 기법을 제안한다. L1 데이터 캐쉬에서 각 워프별 캐쉬 미스율은 긴 사이클 동안 비슷하게 유지되는 특성을 이용하여 각 워프들의 캐쉬 미스율을 예측하고, 이를 바탕으로 MSHR의 자원을 더 이상 사용할 수 없는 상태에서는 낮은 캐쉬 미스율을 보일 것으로 예측되는 워프들과 연산 위주 워프들을 우선적으로 이슈 한다. 제안하는 기법은 예측된 캐쉬 미스율과 MSHR 상태를 기반으로 캐쉬 자원을 더 효율적으로 사용함으로써 GPU 성능을 향상시킨다. 실험 결과, 제안된 기법은 LRR(Loose Round Robin) 정책에 비해 자원점유실패 사이클이 25.7% 감소하고 IPC(Instruction Per Cycle)가 6.2% 증가한다.
Pattern matching algorithm is widely used in many application fields such as bio-informatics, intrusion detection, etc. Among many string matching algorithms, KMP (Knuth-Morris-Pratt) algorithm is commonly used because of its fast execution time when using large texts. However, the processing speed of KMP algorithm is also limited when the text size increases significantly. In this paper, we propose a high throughput parallel KMP algorithm considering CPU-GPU memory hierarchy based on OpenCL in GPGPU (General Purpose computing on Graphic Processing Unit). We focus on the optimization for the allocation of work-times and work-groups, the local memory copy of the pattern data and the failure table, and the overlapping of the data transfer with the string matching operations. The experimental results show that the execution time of the optimized parallel KMP algorithm is about 3.6 times faster than that of the non-optimized parallel KMP algorithm.
많은 의료영상 시스템에서 의료 볼륨 데이터는 압축된 형태로 저장되어 있으며, 압축된 데이터는 가시화 이전에 압축 복원을 수행해야 한다. 압축 복원은 상당한 시간이 소모되기 때문에 본 연구는 삼차원 의료영상의 고속 복원 방식을 제안한다. 제안 방법은 의료영상의 특수성에 대한 사용자 요구를 감안하여, 손실과 무손실 압축을 모두 제공하며 점진적 개선(progressive refinement) 복원 속성을 갖는다. 그리고 그래픽스처리장치(GPU)를 이용한 병렬화를 수행하여 매우 짧은 시간 내에 압축 복원이 수행된다. 마지막으로 압축 복원과 볼륨 가시화를 연계하여 선택적 압축 복원 방법이 가능하며, 이를 통하여 볼륨 압축 복원의 추가적 성능 향상을 얻었다.
현재까지 컨벡스헐 (convex hull) 의 계산 알고리즘들은 주로 점 집합 (point set) 에 대해 연구가 수행되어 왔다. 본 논문에서는 이산 공간에서 다양한 반경을 갖는 구 집합에 대한 컨벡스헐을 근사하는 방법을 제시한다. 구 집합에 대한 컨벡스헐 계산은, 특히 단백질 분자의 구조적인 특성을 연구하는 여러 응용분야에서 계산 효율성을 증대시키기 위한 기반 기술이라 할 수 있다. 분자에 대응하는 구의 집합에 대해 복셀 맵 (voxel map) 자료구조를 적용하고 이를 이용하여 컨벡스헐을 계산하는 알고리즘을 제시한다. 제안된 방법은 GPU를 활용한 병렬처리를 수행하여 평균적으로 6,400개 이하의 구가 포함된 집합에 대해 40ms 이내에 컨벡스헐을 계산하는 성능을 보인다.
본 논문에서는 단백질 분자 간의 인터페이스를 계산하는 알고리즘을 제안한다. 분자가 반데르바스 (van der Waals) 반경을 갖는 구의 집합으로 표현될 때, 공간 상의 한 점 p로부터 분자까지의 거리는 p로부터 가장 가까운 구까지의 거리에 대응한다. 분자 인터페이스는 두 개의 분자에 대해 같은 거리에 있는 점들로 구성된다. 제안된 알고리즘은 공간을 복셀의 집합로 분할한뒤, 각 복셀을 지나는 구의 위치 정보를 저장하여 복셀맵 (voxel map)을 구성하였다. 복셀맵을 이용하여 한 점으로부터 분자까지의 거리를 계산하며, GPU (graphic processor unit)를 이용하여 병렬처리를 수행함으로써 효율적으로 인터페이스를 근사한다.
Recently, Open Computing Language (OpenCL) has been proposed to provide a framework that supports heterogeneous computing platforms. By using an OpenCL framework, digital communication systems can support various protocols in a unified computing environment to achieve both high portability and high performance. This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes for China Multimedia Mobile Broadcasting (CMMB) on a heterogeneous platform. Each step of LDPC decoding has different parallelization characteristics. In this paper, steps suitable for task-level parallelization are executed on the CPU, and steps suitable for data-level parallelization are processed by the GPU. To improve the performance of the proposed OpenCL kernels for LDPC decoding operations, explicit thread scheduling, loop-unrolling, and effective data transfer techniques are applied. The proposed LDPC decoder achieves high performance by using heterogeneous multi-core processors on a unified computing framework.
Journal of Advanced Marine Engineering and Technology
/
제34권6호
/
pp.858-863
/
2010
H.264/AVC를 이용한 동영상의 부호화에서 그 속도를 높이기 위해서는 움직임 예측시간을 줄이는 것이 매우 중요하다. 본 논문에서는 H.264/AVC 부호기의 오픈 소스인 x.264를 대상으로 움직임 예측 알고리즘을 CUDA 기반에서 구현함으로서 기존의 압축 기술 이상의 속도 향상 및 CPU의 점유율을 경감 시킬 수 있음을 검증한다.
IT 기술의 진보적 발전에 따라 클라우드 컴퓨팅 분야 연구들이 활발히 진행되고 있다. 클라우드 컴퓨팅은 가상화 기술을 이용하여 크게 인프라, 플랫폼, 소프트웨어 관점으로 나뉘어 사용자에게 다양한 서비스를 제공한다. 가상화 기술 중에 Desktop Storage Virtualization (DSV)은 분산된 레거시 데스크탑으로 구성되어 있기 때문에 비가용 상태 시간별 클러스터링 및 사용자 요청에 따른 자동 확장이 매우 중요시된다. 본 논문에서는 GPU의 many-core를 이용하여 분산된 데스크탑의 성능 상태 분석 및 자동 확장을 위해 스레드별로 호스트를 매핑하고 병렬적으로 처리하는 Rapid Auto Scaling Mechanism (RASM)을 제안한다.
외란(Outlier)이 있는 데이터를 피팅(Fitting)하는 방법으로 RANSAC(RANdom SAmple Consensus)알고리즘이 선, 원, 타원 등 의 피팅에 많이 사용되고 있다. 본 논문은 다수의 평면에 대한 3차원 포인트 데이터가 주어질 때 각 평면에 대해 RANSAC기반 평면 피팅을 최근 딥러닝 등에 많이 사용되는 GPU의 하나인 CUDA를 이용하여 효율적으로 수행하는 알고리즘을 제안한다. 모의 데이터와 실제 데이터를 이용하여 제안된 알고리즘의 성능을 CPU와 비교하여 보인다. 외란이 많고 인라이어(inlier) 비율이 낮을수록 CPU대비 속도가 향상되고 평면의 개수가 많을수록 평면당 데이터개수가 많을수록 병렬처리에 의한 속도가 가속됨을 보인다. 제안된 방법은 다중 평면 피팅외의 다른 피팅에도 쉽게 적용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.