1 |
Wu, Jianhua, and Leif Kobbelt. "Piecewise Linear Approximation of Signed Distance Fields." In VMV, pp. 513-520. 2003.
|
2 |
Luke, H.D., "The origins of the sampling theorem". IEEE Communications Magazine, Vol. 37, No. 4, pp.106-108, 1999. DOI: 10.1109/35.755459
DOI
|
3 |
Huang, Jian, and Roger Crawfis. "Adaptively represented complete distance fields." Geometric modeling for scientific visualization, 2002.
|
4 |
Sud A, Otaduy MA, Manocha D. "DiFi: Fast 3D distance field computation using graphics hardware". Computer Graphics Forum, Vol. 23, No. 3, pp. 557-566, 2004. DOI: 10.1111/j.1467-8659.2004.00787.x
DOI
|
5 |
Qu H, Zhang N, Shao R, Kaufman A, Mueller K. "Feature preserving distance fields". IEEE Symposium on Volume Visualization and Graphics, pp. 39-46, 2004. DOI: 10.1109/SVVG.2004.3
DOI
|
6 |
Sud A, Govindaraju N, Gayle R, Manocha D. "Interactive 3d distance field computation using linear factorization". In Proceedings of the 2006 symposium on Interactive 3D graphics and games, pp. 117-124, 2006. DOI: 10.1145/1111411.1111432
DOI
|
7 |
Ban R, Valasek G. "First Order Signed Distance Fields", In Eurographics Short Papers, pp. 33-36, 2020.
|
8 |
Hart, John C. "Sphere tracing: Simple robust antialiased rendering of distance-based implicit surfaces." In SIGGRAPH, vol. 93, pp. 1-11. 1993. DOI: 10.1007/s003710050084
DOI
|
9 |
Huang, Jian, Yan Li, Roger Crawfis, Shao-Chiung Lu, and Shuh-Yuan Liou. "A complete distance field representation." In Proceedings IEEE Visualization, 2001. VIS'01., pp. 247-561, 2001. DOI: 10.1109/VISUAL.2001.964518
DOI
|
10 |
Bridson, Robert, Sebastian Marino, and Ronald Fedkiw. "Simulation of clothing with folds and wrinkles." In ACM SIGGRAPH Courses, pp. 3, 2005.
|
11 |
Frisken, Sarah F., Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. "Adaptively sampled distance fields: A general representation of shape for computer graphics." In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp. 249-254. 2000. DOI: 10.1145/344779.344899
DOI
|
12 |
Yin, K., Liu, Y. and Wu, E., "Fast Computing Adaptively Sampled Distance Field on GPU", Pacific Graphics Short Papers, 2011. DOI: 10.2312/PE/PG/PG2011short/025-030
DOI
|
13 |
Chang, Byungjoon, Deukhyun Cha, and Insung Ihm. "Computing local signed distance fields for large polygonal models." In Computer Graphics Forum, Vol. 27, No. 3, pp. 799-806, 2008. DOI: 10.1111/j.1467-8659.2008.01210.x
DOI
|
14 |
Lefebvre, Sylvain, and Hugues Hoppe. "Compressed random-access trees for spatially coherent data." In Eurographics Symposium on Rendering Techniques, pp. 339-349. Eurographics Association, 2007.
|
15 |
Park, Taejung, Sung-Ho Lee, Jong-Hyun Kim, and Chang-Hun Kim. "Cuda-based signed distance field calculation for adaptive grids." IEEE International Conference on Computer and Information Technology, pp. 1202-1206, 2010. DOI: 10.1109/CIT.2010.217
DOI
|
16 |
Mauch, Sean Patrick. "Efficient algorithms for solving static Hamilton-Jacobi equations". California Institute of Technology, 2003.
|
17 |
Nielsen, M.B. and Museth, K., "Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution level sets". Journal of Scientific Computing, Vol. 26, No. 3, pp.261-299, 2006. DOI: 10.1007/s10915-005-9062-8
DOI
|
18 |
Houston, B., Nielsen, M.B., Batty, C., Nilsson, O. and Museth, K., "Hierarchical RLE level set: A compact and versatile deformable surface representation". ACM Transactions on Graphics (TOG), Vol. 25, No. 1, pp.151-175, 2006. DOI: 10.1145/1122501.1122508
DOI
|
19 |
Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R., "Two-way coupled SPH and particle level set fluid simulation". IEEE Transactions on Visualization and Computer Graphics, Vol. 14, No. 4, pp.797-804, 2008. DOI: 10.1109/TVCG.2008.37
DOI
|
20 |
Horn, Daniel Reiter, Jeremy Sugerman, Mike Houston, and Pat Hanrahan. "Interactive kd tree GPU raytracing." In Proceedings of the symposium on Interactive 3D graphics and games, pp. 167-174. 2007. DOI: 10.1145/1230100.1230129
DOI
|
21 |
Selle, A., Su, J., Irving, G. and Fedkiw, R., "Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction". IEEE transactions on visualization and computer graphics, Vol. 15, No. 2, pp.339-350, 2008. DOI: 10.1109/TVCG.2008.79
DOI
|
22 |
Hong, W. and Wang, Y., "A coupled level set and volume-of-fluid simulation for heat transfer of the double droplet impact on a spherical liquid film". Numerical Heat Transfer, Part B: Fundamentals, Vol. 71, No. 4, pp.359-371, 2007. DOI: 10.1080/10407790.2017.1293960
DOI
|
23 |
Mullen, P., McKenzie, A., Tong, Y. and Desbrun, M., "A variational approach to Eulerian geometry processing". ACM Transactions on Graphics (TOG), Vol. 26, No. 3, pp.66, 2007. DOI: 10.1145/1275808.1276459
DOI
|
24 |
Osher, S. and Paragios, N. eds., "Geometric level set methods in imaging, vision, and graphics". Springer Science & Business Media, 2003.
|
25 |
Westermann, Rudiger, Christopher Johnson, and Thomas Ertl. "A level-set method for flow visualization." In Proceedings IEEE Visualization, pp. 147-154. 2000. DOI: 10.1109/VISUAL.2000.885688
DOI
|
26 |
Klemela, J., "Visualization of multivariate density estimates with level set trees". Journal of Computational and Graphical Statistics, Vol. 13, No. 3, pp.599-620, 2004. DOI: 10.1198/106186004X2642
DOI
|