DOI QR코드

DOI QR Code

Approximating the Convex Hull for a Set of Spheres

구 집합에 대한 컨벡스헐 근사

  • 김병주 (경북대학교 컴퓨터학부) ;
  • 김구진 (경북대학교 컴퓨터학부) ;
  • 김영준 (이화여자대학교 컴퓨터공학과)
  • Received : 2013.07.16
  • Accepted : 2013.10.17
  • Published : 2014.01.31

Abstract

Most of the previous algorithms focus on computing the convex hull for a set of points. In this paper, we present a method for approximating the convex hull for a set of spheres with various radii in discrete space. Computing the convex hull for a set of spheres is a base technology for many applications that study structural properties of molecules. We present a voxel map data structures, where the molecule is represented as a set of spheres, and corresponding algorithms. Based on CUDA programming for using the parallel architecture of GPU, our algorithm takes less than 40ms for computing the convex hull of 6,400 spheres in average.

현재까지 컨벡스헐 (convex hull) 의 계산 알고리즘들은 주로 점 집합 (point set) 에 대해 연구가 수행되어 왔다. 본 논문에서는 이산 공간에서 다양한 반경을 갖는 구 집합에 대한 컨벡스헐을 근사하는 방법을 제시한다. 구 집합에 대한 컨벡스헐 계산은, 특히 단백질 분자의 구조적인 특성을 연구하는 여러 응용분야에서 계산 효율성을 증대시키기 위한 기반 기술이라 할 수 있다. 분자에 대응하는 구의 집합에 대해 복셀 맵 (voxel map) 자료구조를 적용하고 이를 이용하여 컨벡스헐을 계산하는 알고리즘을 제시한다. 제안된 방법은 GPU를 활용한 병렬처리를 수행하여 평균적으로 6,400개 이하의 구가 포함된 집합에 대해 40ms 이내에 컨벡스헐을 계산하는 성능을 보인다.

Keywords

References

  1. T.J.A. Ewing, S. Makino, A.G. Skillman, and I.D. Kuntz, "DOCK4.0: Search Strategies for Automated Molecular Docking of Flexible Molecule Databases," Journal of Computer-Aided Molecular Design, Vol.15, No.5, pp.411-428, 2001. https://doi.org/10.1023/A:1011115820450
  2. S.K. Lai-Yuen and Y.S. Lee, "Interactive Computer-Aided Design for Molecular Docking and Assembly," Computer-Aided Design and Applications, Vol.3 No.6, pp.701-709, 2006. https://doi.org/10.1080/16864360.2006.10738423
  3. D. Levine, M. Facello, P. Hallstrom, G. Reeder, B. Walenz, and F. Stevens, "Stalk: an Interactive System for Virtual Molecular Docking," IEEE Computational Science and Engineering, Vol.4, No.2, pp.55-65, 1997.
  4. H. Nagata, H. Mizushima, and H. Tanaka, "Concept and Prototype of Protein-Ligand Docking Simulator with Force Feedback Technology," Bioinformatics, Vol.18, No.1, pp.140-146, 2002. https://doi.org/10.1093/bioinformatics/18.1.140
  5. R.D. Taylor, P.J. Jewsbury, and J.W. Essex, "A Review of Protein-Small Molecule Docking Methods," Journal of Computer-Aided Molecular Design, 16(3), 151-166(2002). https://doi.org/10.1023/A:1020155510718
  6. O. Trott and A.J. Olson, "AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading," Journal of Computational Chemistry, Vol.31, No.2, pp.455-461, 2010.
  7. C.M. Venkatachalam, X. Jiang, T. Oldfield, and M. Waldman, "LigandFit : a Novel Method for the Shape-Directed Rapid Docking of Ligands to Protein Active Sites," Journal of Molecular Graphics and Modelling, Vol.21, No.4, pp.289-307, 2003. https://doi.org/10.1016/S1093-3263(02)00164-X
  8. Y. Zhao and M.F. Sanner, "Protein-Ligand Docking with Multiple Flexible Side Chains," Journal of Computer Aided Molecular Design, Vol.22 No.9, pp.673-679, 2008. https://doi.org/10.1007/s10822-007-9148-5
  9. M. Petrek, M. Otyepka, P. Banas, P. Kosinova, J. Koca, and J. Damborsky, "CAVER: a new tool to explore routes from protein clefts, pockets and cavities," BMC Bioinformatics, Vol.7, pp.316-324, 2006. https://doi.org/10.1186/1471-2105-7-316
  10. M.Petrek, P. Kosinova, J. Koca, and M. Otyepka, "MOLE: a Voronoi diagram based explorer of molecular channels, pores, and tunnels," Structure 2007, Vol.15, No.11, pp.1357-1363, 2007.
  11. R. G. Coleman, and K. A. Sharp, "Finding and Characterizing Tunnels in Macromolecules with Application to Ion Channels and Pores," Biophysical Journal, Vol.96, No.2, pp.632-645, 2009. https://doi.org/10.1529/biophysj.108.135970
  12. C. B.Barber, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm for convex hulls," ACM Transactions on Mathematical Software, Vol.22, No.4, pp.469-483, 1996. https://doi.org/10.1145/235815.235821
  13. A. Stein, E. Geva, and J. El-Sana, "CudaHull: Fast parallel 3D convex hull on the GPU," Computers & Graphics, Vol.36, No.4, pp.265-271, 2012. https://doi.org/10.1016/j.cag.2012.02.012
  14. J.-D. Boissonnat, A. Cerezo, O. Devillers, J. Duquesne, M. Yvinec, "An algorithm for constructing the convex hull of a set of spheres in dimension d. Computational Geometry, Vol.6, No.2, pp.123-130, 1996. https://doi.org/10.1016/0925-7721(95)00024-0
  15. B. Kim, J. E. Lee, Y. J. Kim, K.-J. Kim, "Comparison of voxel map and sphere tree structures for proximity computation of protein molecules," Journal of Korea Multimedia Society, Vol.15, No.6, pp.794-804, 2012. https://doi.org/10.9717/kmms.2012.15.6.794
  16. B. Kim, and K.-J. Kim, "Computing the convex hull for a set of spheres on a GPU," Procd. of VRCAI 2012 (poster abstract), Dec.2-4, Singapore, pp.345, 2012.

Cited by

  1. Minimal Surface Convex Hulls of Spheres vol.46, pp.4, 2018, https://doi.org/10.1007/s10013-018-0317-8