• Title/Summary/Keyword: 변형힌지

Search Result 125, Processing Time 0.024 seconds

Composite Beam Element for Nonlinear Seismic Analysis of Steel Frames (강재 골조의 비선형 지진해석을 위한 합성 보 요소)

  • Kim, Kee Dong;Ko, Man Gi;Yi, Gyu Sei;Hwang, Byoung Kuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.577-591
    • /
    • 2002
  • This study presented a composite beam element for modeling the inelastic behavior of the steel beam, which has composite slabs in steel moment frames that are subjected to earthquake ground motions. The effects of composite slabs on the seismic behavior of steel moment frames were investigated. The element can be considered as a single-component series hinge type model whose predicted analytical results were consistent with the experimental results. Likewise, the element showed a significantly better performance than the bare steel beam elements. The composite model can also predict more accurately the local deformation demands and overall response of structural systems under earthquake loading compared with the bare steel models. Therefore, composite stabs can significantly affect locally and globally predicted responses of steel moment frames.

Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength (이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가)

  • P.D.C. Yang;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.93-102
    • /
    • 1992
  • In this paper presented is the reliability analysis of a double skinned hull structure against the ultimate bending moment and fatigue strength under longitudinal bending. The ultimate bending strength is obtained through the beam-column approach in which the load-end shortening curves(stress-strain curves) of stiffened plates under mini-axial compression are derived using the concept of plastic hinge collapse. The fatigue damage only is considered as fatigue failure for which the Miner's damage rule is employed. Assessed are fatigue reliability for the possible joint types found at deck structure. Also included is the reliability analysis of a series system of which elements are ultimate and fatigue failure.

  • PDF

Earthquake Response Analysis of Bridges Using Fiber Element Method (섬유요소를 이용한 교량의 비선형 지진응답해석)

  • Byun, Soon-Joo;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.29-35
    • /
    • 2006
  • Fiber element method in earthquake response analysis of bridges is used to represents a realistic flexural deformation according to nonlinear behavior of beam-column section. Nonlinear pseudo-static analysis of two column bent using fiber element is accomplished and failure mechanism of the plastic hinge region is studied. Load-displacement curve obtained by nonlinear pseudo-static analysis can be applicable to earthquake response analysis by capacity spectrum method. The nonlinear time history analysis of a full bridge model using fiber element experienced by the ground motion corresponding to the target response spectrum is accomplished. The result of time history analysis is similar to that of capacity spectrum method.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Geological Structure and Deformation History in the Gwangju area, Gyeonggi-do, Korea (경기도 광주시 일대의 지질구조와 변형사)

  • Lee Hee-Kwon;Kim Man-Kwang
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.108-115
    • /
    • 2005
  • Gyeonggi metamorphic complex in the Gwangju area include banded biotite gneiss and quartzofeldspathic gneiss. Detailed structural analysis suggests that structural elements in the study area were formed by at least five phase of deformations. Penetrative compositional foliations(S1) formed in the banded gneiss during the first metamorphism and deformation (D1). After intrusion of plutonic rocks, the second deformation (D2) produced S2 foliations in the banded gneiss and quartzofeldspathic gneiss during the second metamorphism. D3 structures are represented by isoclinal folds (F3) whose axial surfaces are parallel to S3 foliations. The N-S oriented shortening (D4) was accommodated by closed upright F4 fold with about 100m of axial surface separation. F4 fold is refolded by regional F5 folding resulting in different orientation and fold style of F4 fold according to the position of F5 fold. The F4 fold with tight interlimb angle is subparallel to the axial surface (north-south) of F5 fold in the core of the F5 fold. In contrast the F4 fold trends northeast in the western limb and northwest in the eastern limb of F5 fold. The interlimb angle is larger in the limbs than that in the core of F5 fold. The trace of foliations is constrained by mainly F4 and F5 folds. Joint fanning around fold is developed in the limbs of F5 fold and bc joints are dominant in the hinge area of F5 fold. A strike-slip fault had developed in tile central part of the study area after F5 folding. The orientation of joint and foliation is rotated anticlockwise about $15^{\circ}$ by the landslide occurred during the Quaternary.

Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load (정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가)

  • Kim, Dae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.31-42
    • /
    • 2015
  • The Reinforced subgrade for railroad (RSR) was constructed for one way railway line with the dimension of 5 m high, 6 m wide and 20 m long to evaluate its performance under train design load. The RSR has characteristics of short length (0.3-0.4 H) of reinforcement and rigid wall, 30 and 40 cm vertical spacing of reinforcement installation. To enhance economics and constructability, three kinds of connections (welding, hinge & bolt, bold wire) were also designed to realize the integration between rigid wall and reinforced subgrade. Two times of static loading tests were done on the full size railroad subgrade. The maximum applied pressure was 0.98 MPa (the maximum test load 5.88 MN), which corresponds to 19.6 times of the design load for railroad subgrade, 50 kPa. The performance on the RSR was evaluated with the safety on the failure, subgrade bearing capacity and settlement, horizontal displacement of wall, and reinforcement strain. Based on the full scale test, we confirmed that the RSR with the conditions of 0.35 H (35% of height) short reinforcement length, hinge & bolt type connection for integration between rigid wall and reinforced subgrade, and 40cm vertical spacing of reinforcement installment shows good performance under train design load.

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

The Response Characteristics of Push-over and Nonlinear Time History Analysis with Variations in the Upper Stories of the Mixed Building Structure (복합구조물의 상부층수 변화에 따른 탄소성 정적 및 동적 응답특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.73-83
    • /
    • 2001
  • The mass and stiffness of upper wall-lower frame system(mixed building structures) change sharply at transfer floor due to different structural system in upper and lower part. These mixed building structures generally show the stiffness, weight or geometric vertical irregularities. The purpose of this study is to investigate the response characteristics of these structures by push-over analysis and nonlinear time history analysis. For four types of analysed models, only the variation of upper wall stories was considered. The conclusions of this study are following; (1) In the push-over analysis, yielding hinges in beams and columns of lower frame occurred at the base shear of similar magnitude in all models. But as the number of stories of upper wall increases, yielding hinges at ends of coupling beams were observed in the small magnitude of base shear. (2) In the nonlinear time history analysis, yielding of lower frame occurred at beams with as small ground acceleration as 55gal, and in upper walls yielding was concentrated on coupling beams and shear walls near the transfer floor. (3) As the number of stories of upper walls decreases, the story stiffness of the lower frames decreased relatively and the occurrence of soft stories in the lower frame was observed.

  • PDF

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.