DOI QR코드

DOI QR Code

Performance Evaluation of Full Scale Reinforced Subgrade for Railroad with Rigid Wall Under Static Load

정하중 재하 시 실물 강성벽 일체형 철도보강노반의 성능평가

  • Received : 2015.07.06
  • Accepted : 2015.08.26
  • Published : 2015.09.30

Abstract

The Reinforced subgrade for railroad (RSR) was constructed for one way railway line with the dimension of 5 m high, 6 m wide and 20 m long to evaluate its performance under train design load. The RSR has characteristics of short length (0.3-0.4 H) of reinforcement and rigid wall, 30 and 40 cm vertical spacing of reinforcement installation. To enhance economics and constructability, three kinds of connections (welding, hinge & bolt, bold wire) were also designed to realize the integration between rigid wall and reinforced subgrade. Two times of static loading tests were done on the full size railroad subgrade. The maximum applied pressure was 0.98 MPa (the maximum test load 5.88 MN), which corresponds to 19.6 times of the design load for railroad subgrade, 50 kPa. The performance on the RSR was evaluated with the safety on the failure, subgrade bearing capacity and settlement, horizontal displacement of wall, and reinforcement strain. Based on the full scale test, we confirmed that the RSR with the conditions of 0.35 H (35% of height) short reinforcement length, hinge & bolt type connection for integration between rigid wall and reinforced subgrade, and 40cm vertical spacing of reinforcement installment shows good performance under train design load.

강성벽 일체형 철도보강노반의 열차하중 하에서의 성능을 평가하기 위하여 실물 단선 철도 노반과 동일한 규모인 높이*폭*길이(5m*6m*20m)의 보강노반을 건설하였다. 철도보강노반은 높이의 30~40%의 짧은 보강재와 강성벽체, 보강재 연직배치간격 30와 40cm를 적용한 특징이 있다. 경제성 및 시공성 향상을 위하여 강성벽체와 보강토체와의 일체화 연결방식을 3종류(용접형, 힌지볼트형, 굵은 철사형)로 다르게 설계하였다. 철도 설계하중 50kPa의 19.6배에 해당되는 0.98MPa (최대시험하중 5.88MN) 최대하중에 대하여 2회 정하중 재하시험을 실시하였다. 철도보강노반의 성능은 파괴에 대한 안정성, 지지력과 침하, 벽체 발생 수평변위, 보강재 발생 변형률에 대한 검토로부터 평가하였다. 실물 실대형 시험결과로부터 높이의 35% 수준의 짧은 보강재와 힌지 볼트형 연결방식을 채택한 강성벽체 일체형 철도보강노반에서 40cm의 보강재 연직간격을 적용하여도 열차 설계하중 하에서 좋은 성능을 보이는 것을 확인할 수 있었다.

Keywords

References

  1. Tatsuoka, F., Tateyama, M. and Murata, O. (1989), "Earth retaining wall with a short geotextile and a rigid facing", Proc. 12th Int. Conf. on SMFE, Rio de Janeiro, 12(2), pp. 1311-1314.
  2. Tatsuoka, F., Tateyama M., Uchimura T. and Koseki J. (1997) Geosynthetic-reinforced soil retaining walls as important permanent structures(1996-1997 Mercer Lecture), Geosynthetics International, Vol.4, No.2 pp.81-136. https://doi.org/10.1680/gein.4.0090
  3. Tatsuoka, F (2005), 新しい補強土擁壁のすべて.
  4. Kim, D.S., Park, S.Y. and Kim, K.H. (2012), "Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall", Journal of the Korean Geosynthetics Society, Vol.11, No.4, pp.27-35.
  5. Kim, D.S., Hwang S.H., Kim U.J., Park Y.K. and Park, S.Y. (2013), Evaluation of design characteristics in the reinforced railroad subgrade through the sensitivity analysis, Journal of the Korean Geosynthetics Society, Vol.12, No.3 pp.15-22. https://doi.org/10.12814/jkgss.2013.12.3.015
  6. Associations of RRR (2001), RRR-B design and construction manual, pp.23.
  7. Korea Railway Network Authority (2013), Railway design standard for roadbed, pp.6-11.

Cited by

  1. Evaluation of Applicability of Deep Cement Mixing Method as Soft-Ground Improvement for Reinforced Subgrade for Railways vol.19, pp.5, 2015, https://doi.org/10.9798/kosham.2019.19.5.237