• Title/Summary/Keyword: 변형율 경화

Search Result 62, Processing Time 0.031 seconds

Analysis of axisymmetric extrusion through curved dies by using the method of weighted residuals (가중잔류항법을 이용한 곡면금형의 축대칭 전방압출해석)

  • 조종래;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.509-518
    • /
    • 1987
  • The paper is concerned with the analysis of axisymmetric forward extrusion by using the method of weighted residuals. In the method of weighted residuals, the flow function and the stress functions are assumed so as to cover the global control volume. The derived stress and strain components are used to formulate a constitutive equation in the error form, so that the error is minimized to determine the stress and strain components. The method of least squares is then chosen for the minimization of errors. The distribution of stresses and strains and the forming load are determined for the workhardening material considering the frictional effect at the die surface. The computed results are very similar to those obtained by the finite element method. The method is simpler in application and requires less computational time than the finite element method. Experiments are carried out for aluminum and steel specimens using curved dies. It is found that the experimental observation is mostly in agreement with the computed results by the method of weighted residuals.

A Study on the Cyclic Hardening Property and the Low Cycle Fatigue Behavior of Marine Materials (박용재료(舶用材料)의 반복경화(反復硬化) 및 저(低)싸이클 피로특성(疲勞特性)에 관한 연구)

  • S.M. Cho;K. Horikawa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 1991
  • In the non-linear behavior of many materials, there is difference between the monotonic behavior by static load and the cyclic behavior by cyclic load. In particular, the short fatigue cracks to propagate in elasto-plastic stress concentrations(notches), are governed significantly by the cyclic behavior of materials. Accordingly, it is needed to investigate and compare the monotonic and cyclic behavior of materials. In the pressent study, the stress-strain relations of materials by monotonic and cyclic load tests were examined for 2 kinds of steels(SS41, HT80) and 5 kinds of Al-alloys(A5083-O, A6N01-T5, A7N01-T4, A7016-T6, A7178-T6). And the constants for mechanical properties of the materials were determined by experimental results, Moreover, when a notch was subjected to cyclic load, the effect of cyclic hardening property of materials on the variation of stress-strain amplitude in the notch tip was discussed by the application of Neuber's rule and experiments for a center notched plate.

  • PDF

A Study on Nonlinear Analysis of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 비선형(非線型) 해석(解析)에 관한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 1987
  • A finite element method has been developed to study the material nonlinear analysis of reinforced concrte structures. Concrete behavior under the biaxial state of stress is represented by a nonlinear constitutive relationship which incorporates tensile cracking, tensile stiffening effect between cracks and the strain-softening phenomenon beyond the maximum compressive strength. The concrete model used is based upon nonlinear elasticity by assuming concrete to be an orthotropic material and modeled as equivalent uniaxial stress-strain constitutive relationship using equivalent uniaxial strain. The streel reinforcement is assumed to be in a uniaxial stress state and is modeled as a bilinear, elasto-plastic material with strain hardening approximating the Bauschinger effect. In plane stress state, R.C. beams is modeled as a quadratic element that has two degrees of freedom in each node. And this results of finite element analysis are compared with the experimential results of midspan deflection, stresses and strains.

  • PDF

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.

Engineering Properties of HPFRCC Including Both Organic and Inoranic Fibers (유·무기 섬유를 복합사용한 HPFRCC의 공학적 특성)

  • Lee, Jong Tae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.615-620
    • /
    • 2015
  • The high performance fiber reinforced cementitious composite (HPFRCC) controls the cracking development of the structure by inducing micro-cracking and strain hardening behavior after the initial cracking under the tensile conditions. Although, in Korea, the research about manufacturing the single-fiber reinforced cementitious composite or the mechanical properties of hardened status has been conducted, the research to apply the HPFRCC with multi-fiber is not sufficient. Hence, in this research, considering the workability and economic aspect for practical applications, the engineering properties of HPFRCC with combined long steel fiber (SL) and long organic fiber (OL) are evaluated such as workability and strength. As a result of evaluating the engineering properties of HPFRCC, the most favorable performance was obtained when the mixture contained 1.5% of combined SL and OL.

Vacuum Infusion System for Manufacture Process Convergence and Automation of Boat (보트제작 공정융합과 자동화를 위한 베큠인퓨전 시스템 구현)

  • Yoon, Dal-Hwan;Xiang, Zhao;Lee, Cheol-Ho
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.274-280
    • /
    • 2018
  • In this paper, we have developed the vacuum infusion automation system for the safety and quality advancement of the boat. It is necessary for the precise mixing rate of resinoid and curingagent to inject in an inner ship and deck at short time. We need for the optimal condition to a strengthen construction of boat. This one can solve the post deformability of the strengthen structure and can control the precise mixing rate of resinoid and curingagent to the resinoid fluidity and flowing rate per time. Under these condition, we can advance the an quality construction that based on the model and database information of the boat. Also, we can have an effective process management and retrench the production cost.

On Reliability and Comparison of $J_{Rice}$-Resistance considering Optimal Strength Ratio and $J_{\delta}$-Resistance Curves converted from CTOD using Appropriate Strength chosen according to Strain Hardening Level (강도비를 적용한 Rice-저항곡선과 변형경화를 고려한 $J_{\delta}$-저항곡선과의 비교)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • The comparison of $J_{Rice}$-resistance considering a few strength ratio in Rice J-integral formula and $J_{\delta}$-resistance curves converted from experimental CTOD using appropriate strength chosen according to strain hardening level, n=10.6 (A533B steel) and n=8.1 (BS4360 steel) is carried out. The optimal dimensionless strength ratio like the factor of revision, (see full text)reflecting strain hardening level in Rice\`s experimental formula is found out and the reliability of appropriate reference strength chosen according to strain hardening level in different materials is investigated through doing that CTOD is transformed from $J_{\delta}$-integral using relationship between J-integral and CTOD. The results are as follows; 1) The optimal factor of revision is when m equals to 3 in (see full text) for Rice's and the above optimal factor of revision multiplies by coefficient, η in Rice's experimental formula instead of n=2, 2) and the pertinent reference strength for high strain hardening material like BS4360 steel is ultimate strength, $\sigma_{u}$ and for material like A533B steel is ultimate-flow strength, $\sigma_{u-f}$. The incompatible of the behavior of both experimental J-resistance curves using Rice's formula and CTOD-resistance curves for A533B and BS4360 steel by Gordon, et al., could be corrected using the optimal factor of revision in Rice\`s and the pertinent reference strength in J=$m_{j}$${\times}$$\sigma_{i}$${\times}$CTOD.

The Influence of Temperature and Strain Rate on the Mechanical Behavior in Uranium

  • Lee, Key-Soon;Park, Won-Koo
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 1978
  • The effect of temperature and strain rate on the deformation behavior of $\alpha$-uranium was investigated in the temperature ranged 300$^{\circ}$ to 55$0^{\circ}C$ by strain, rate change test. Strain rate sensitivity, activation volume, strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent increases with strain below 40$0^{\circ}C$, while the exponent decreases with strain above 50$0^{\circ}C$. It is believed that the increase of strain rate sensitivity exponent with strain below 40$0^{\circ}C$ can be attributed to an increase in internal stress as a result of work hardening while decrease of the exponent with strain above 50$0^{\circ}C$ is due to predominance of thermal softening over work hardening because more slip, system are active in deformation above about 50$0^{\circ}C$.

  • PDF

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.