• 제목/요약/키워드: 변형원

검색결과 1,244건 처리시간 0.03초

Three-dimensional Boundary Segmentation using Multiresolution Deformable Model (다해상도 변형 모델을 이용한 3차원 경계분할)

  • 박주영;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.592-594
    • /
    • 2000
  • 변형모델(deformable model)은 볼륨의료영상(volumetric medical image)으로부터 복잡한 인체기관의 3차원적 경계를 분할해내기 위해 효과적인 방법을 제공한다. 그러나, 기존 변형모델은 초기와 의존성, 오목한 경계(concavity) 분할의 비적합성, 그리고 모델내 요소간 자체교차(self-intersection)의 제한점을 가지고 있었다. 본 연구에서는 이러한 제한점을 극복하고, 오목한 구조를 포함하는 복잡한 인체기관의 경계를 분할하기에 적합한 새로운 변형모델을 제안하였다. 제안한 변형모델은 볼륨영상 피라미드(pyramid)를 기반으로 다해상도(multiresolution)의 모델 정제화(refinement)를 수행한다. 다해상도 모델 정제화는 전역적 시셈플링(global resampling) 및 지역적 리샘플링(local resampling)를 통하여 저해상도의 모델로부터 점차 고해상도의 모델로 이동하면서 객체의 경계를 계층적으로 분할해가는 방법이다. 다해상도 모델에 의한 계층적 경계 분할은 초기화 조건에의 의존성을 극복할 수 있게할 뿐 아니라, 빠른 속도로 원하는 객체의 경계에 수렴할 수 있게 한다. 또한 지역적 리샘플링은 모델 구성요소의 정규화를 수행함으로써 객체의 오목한 부분을 성공적으로 분할할 수 있게 한다. 그리고, 제안 모델은 기존 변형모델에서 포함하는 내부 힘(internal force)과 외부 힘(external force)외에 자체교차방지 힘(non-self-intersection force)을 추가함으로서 효과적으로 모델내의 자체교차를 방지할 수 있게 하였다.

  • PDF

Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation (원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 3부
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents a physically-based haptic rendering algorithm for a deformable object based on visual information about the intervention between a tool and a real object in a remote place. The physically-based model of a deformable object is created from the mechanical properties of the object and the captured image obtained with a CCD camera. When a slave system exerts manipulation tasks on a deformable object, the reaction force for haptic rendering is computed using boundary element method. Snakes algorithm is used to obtain the geometry information of a deformable object. The proposed haptic rendering algorithm can provide haptic feedback to a user without using a force transducer in a teleoperation system.

  • PDF

Longitudinal Deformation Characteristics during Excavation of a old Tunnel in Operation (노후터널의 운영중 터널확대시 지반종단변형특성에 관한 연구)

  • Baek, Ki-Hyun;Kim, Woong-Ku;Seo, Kyoung-Won;You, Dong-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • 제27권11호
    • /
    • pp.47-54
    • /
    • 2011
  • In this paper, longitudinal behaviors of a tunnel with respect to various conditions are analyzed, and a new equation of longitudinal deformation curve during tunnel expansion is proposed. Finally, the range of protection by a protector is investigated using the proposed equation. To achieve the objectives, numerical analysis according to the ground and expansion conditions is performed. The results show that the range of protection, when a 2 traffic lane tunnel is expanded to 4 traffic lanes, should cover at least 24m to backward and 35m forward.

A Newly-developed Plane Strain Testing Device and Its Applicability (새로운 평면변형률 시험장비의 개발과 적용성 검증)

  • Kim Chang-Youb;Lee Young-Sun;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • 제22권1호
    • /
    • pp.5-14
    • /
    • 2006
  • A simple and useful plane strain testing device was newly developed and its mechanical features were presented in this paper. The new testing device was designed to be capable of testing various stress paths expected under plane strain condition with only the conventional triaxial loading system. The applicability of the new testing device was systematically checked both by theoretical evaluation and by experiments. As a result, it was found that the new testing device has much wider range of application than the conventional plane strain testing devices.

Micro-mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-scale Modeling Method (멀티스케일 모델링 기법을 이용한 섬유강화 복합재료의 미시역학적 파손예측 및 검증)

  • Kim, Myung-Jun;Park, Sung-Ho;Park, Jung-Sun;Lee, Woo-Il;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제41권1호
    • /
    • pp.17-24
    • /
    • 2013
  • In this paper, a micro-mechanical failure prediction program is developed based on SIFT (Strain Invariant Failure Theory) by using the multi-scale modeling method for fiber-reinforced composite materials. And the failure analysis are performed for open-hole composite laminate specimen in order to verify the developed program. First of all, the critical strain invariants are obtained through the tensile tests for three types of specimens. Also, the matrices of strain amplification factors are determined through the finite element analysis for micro-mechanical model, RVE (Representative Volume Element). Finally, the microscopic failure analysis is performed for the open-hole composite laminate specimen model by applying a failure load obtained from tensile test, and the predicted failure indices are evaluated for verification of the developed program.

Effective Simulation Control for Deformable Object (변형 가능한 물체를 위한 효과적인 시뮬레이션 제어)

  • Hong, Min;Choi, Min-Hyung
    • The Journal of Korean Association of Computer Education
    • /
    • 제8권1호
    • /
    • pp.73-80
    • /
    • 2005
  • To achieve a natural and plausible interaction with deformable objects and to setup the desirable initial conditions of simulation, user should be able to define and control the geometric constraints intuitively. In addition, user should be able to utilize the simulation as a problem solving platform by experimenting various simulation situations without major modification of the simulator. The proposed physically based geometric constraint simulation system solves the problem using a non-linear finite element method approach to represent deformable objects and constraint forces are generated by defining geometric constraints on the nodes of the object to maintain the restriction. It allows user to define and modify geometric constraints and an algorithm converts these geometric constraints into constraint forces which seamlessly integrate controllability to the simulation system. Simulator can handle linear, angular, inequality based geometric constraints on the objects. Our experimental results show that constraints are maintained in the tight error bound and preserve desired shape of deformable object during the entire simulation.

  • PDF

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • 제8권2호
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권4A호
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

Three dimensional accuracy analysis of dental stone casts fabricated using irreversible hydrocolloid impressions (알지네이트 인상체에서 제작된 치과용 석고 모형의 정확도에 대한 삼차원 디지털 분석)

  • Joo, Young-Hun;Lee, Jin-Han
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제31권4호
    • /
    • pp.316-328
    • /
    • 2015
  • Purpose: The objects of this study was to evaluate the accuracy of the dental stone casts made from alginate impressions according to storage condition and stone pouring time. Materials and Methods: Each of upper and lower impressions of dental model was taken. The dental stone models were made immediately, 10, 30, 60, 180, 360 minutes after the impressions were taken at each storage condition. 3D models were constructed by scanning the stone model using 3D laser scanner. With Reference points, positioned on digital models, linear measurements of the dimensional change were compared by 3D metrology software, 3D average models were made and superimposition to identify the specific site of dimensional change and to measure surface deviation (mm). Results: Dental stone models which were made immediately after taking the impression showed the smallest linear dimensional change. As the stone pouring time was prolonged, the linear dimensional change was increased. More than 180 minutes after impression taking, linear dimensional change and surface distortion increased in the posterior molar region, regardless of the storage condition. Conclusion: For the optimum accuracy of the dental stone casts, alginate impression should be poured as soon as possible. If there were a need for storing, a humidor with 100% relative humidity must be used and be stored less than 180 minutes to fabricate the accurate dental model.

Comparison of Conventional Thoracoscopic Wedge Resection and Modified Transaxillary Minithoracotomy with Thoracoscopy for the Treatment of Primary Spontaneous Pneumothorax (원발성 자연 공기가슴증 환자에서 고식적인 흉강경하 쐐기절제술과 흉강경을 이용한 변형된 소절개술식의 비교)

  • Lee Mi Kyoung;Ryu Dae Woong;Lee Sam Youn;Choi Jong Bum;Choi Soon Ho
    • Journal of Chest Surgery
    • /
    • 제38권5호
    • /
    • pp.371-376
    • /
    • 2005
  • Background: Retrospective study was carried out on patients with primary spontaneous pneumothorax with the aim of determining if conventional thoracoscopic wedge resection is superior to modified transaxillary minithoracotomy with thoracoscopy in the surgical treatment. Material and Method: 160 patients, aged 14 to 35 years with primary spontaneous pneumothorax were involved in this study. Patients were assigned to two groups by surgical technique; Conventional thoracoscopic wedge resection (group A; n=80) and modified transaxillary minithoracotomy with thoracoscopy (group B; n=80). Apical pleural abrasion & talc poudrage were performed in all cases. This study evaluated the following factors: duration of operation, days of analgesics used after operation, number of no air leak on the first postoperative day, duration of indwelling chest tube, hospital stay, postoperative complications, chronic chest pain (during follow-up) and resumption of normal activity. Relapses (ipsilateral recurrence after discharge) during follow-up periods were evaluated. Result: No significant differences were found in any of the factors studied in either group. Conclusion: Conventional thoracoscopic wedge resection and modified transaxillary minithoracotomy with thoracoscopy offer similar results in the surgical treatment of primary spontaneous pneumothorax. The rate of complication is low and the level of pain is acceptable without long-term sequele. Therefore, modified transaxillary minithoracotomy with thoracoscopy method appears as a valuable alternative surgical technique.