• Title/Summary/Keyword: 변형률 적합조건

Search Result 69, Processing Time 0.027 seconds

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear (순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석)

  • Cha, Young-Gyu;Kim, Hak-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.175-181
    • /
    • 2010
  • The three truss models(equilibrium truss model, Mohr compatibility truss model, and the soften truss model) based on a rotating angle is called the rotating-angle model. The three rotating-angle models have a common weakness: they are incapable of predicting the so-called "contribution of concrete". To take into account this "contribution of concrete", the modern truss model(MCFT, STM) treats a cracked reinforced concrete element as a continuous material. By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, MTM is capable of producing the nonlinear analysis of reinforced concrete structures composed of membrane element. In this paper, an efficient algorithm is proposed for the solution of proposed model incorporated with failure criteria. This algorithm is used to analyze the behavior of reinforced membrane element using the results of Hsu test.

Relation of Deflection of Prestressed Concrete Members to Unbonded Tendon Stress and Effects of Various Parameters (비부착 프리스트레스트 보강재를 갖는 PSC 부재의 변위와 프리스트레스트 보강재 응력의 상관관계 및 변수별 효과)

  • 문정호;임재형;이창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 2002
  • This paper is a part of research series for the verification of the proposed Moon/Lim design equation. An analytical study was performed to examine the relation between the flexural behavior and the unbonded tendon stress of PSC members. The strain compatibility assumption was used in this study since previous studies showed that the stress variations of tendon had a close relation with the member displacements. The proposed equation has been developed with the same assumption of strain compatibility. Therefore the analytical procedure with the strain compatibility assumption was developed to compute the member displacements of previous tests. Then the analytical results were compared with tests results. The comparison showed that the strain compatibility assumption can be properly applicable to the design equation. Based on the analytical results, the relation between the tendon stress and the member flexural behavior at ultimate was examined. A parametric study also carried out with regard to the member displacements. As results, the parameters used for the proposed equation were proven to be proper for the computation of tendon stress.

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.

Behavior of Reinforced Concrete Members Having Different Steel Arrangements (철근의 배근 위치가 다른 철근콘크리트 부재의 거동 분석)

  • Lee, Jung-Yoon;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.685-692
    • /
    • 2007
  • When the shear force governs the response of an RC element, as in the case of a low-rise shear wall, the effect of shear on the element's response is thought to be responsible for the 'pinching effect' in the hysteretic loops. However, it was recently shown that this undesirable pinching effect can be eliminated in the hysteretic load-deformation curves of a shear-dominant element if the steel grid orientation is properly aligned in the direction of the applied principal stresses. In this paper, the presence and absence of the pinching mechanism in the hysteretic loops of the shear stress-strain curves of RC elements was explained rationally using a compatibility aided truss model. The analytical results indicate that the pinching effect of the RC elements is strongly related to the direction of the steel arrangement. The area of the energy dissertation does not increase proportionally to the difference between the direction of the principal compressive stress and the direction of the steel arrangement.

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.

Shear Compatibility Condition with Arch Action in Simply Supported RC Beam (단순지지된 RC보에서의 아치효과를 고려한 전단변형적합조건)

  • Lee, Seong-Chul;Cho, Jae-Yeol;Kim, Woo;Park, Byung-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.847-850
    • /
    • 2008
  • In simply supported concrete beams with concentrated load, there is arch action that the internal lever arm length varies through shear span. Recently shear analysis model considering this effect has been developed, but the analysis algorithm is so complicated. Moreover, the variation of internal lever arm length is not considered on the shear compatibility condition. In this study, the shear analysis model is developed more simply and the variation of internal lever arm length is considered on the shear compatibility condition. From these modifications, an actual shear behavior of RC beams subjected to concentrated load could be expected from the results of the proposed analysis model.

  • PDF

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.

Shear Behavioral Model based on Shear Deformation Compatibility in Reinforced Concrete Members (전단변형적합조건에 기반한 철근콘크리트 부재의 전단 해석 모델)

  • Kim, Woo;Rhee, Chang-Shin;Jeong, Jae-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.379-388
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. The results may confirm the rationale of the proposed behavioral model.

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF