• Title/Summary/Keyword: 변형률에너지함수

Search Result 50, Processing Time 0.035 seconds

Finite Element Analysis of Lead Rubber Bearing by Using Strain Energy Function of Hyper-Elastic Material (초탄성 재료의 변형률에너지함수를 이용한 LRB받침의 유한요소해석)

  • Cho, Sung Gook;Park, Woong Ki;Yun, Sung Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.361-374
    • /
    • 2016
  • The material property of the rubber has been studied in order to improve the reliability of the finite element model of a lead rubber bearing (LRB) which is a typical base isolator. Rubber exhibits elastic behaviour even within the large strain range, unlike the general structural material, and has a hyper-elastic characteristics that shows non-linear relationship between load and deformation. This study represents the mechanical characteristics of the rubber by strain energy function in order to develop a finite element (FE) model of LRB. For the study, several strain energy functions were selected and mechanical properties of the rubber were estimated with the energy functions. A finite element model of LRB has been developed by using material properties of rubber and lead which were identified by stress tests. This study estimated the horizontal and vertical force-displacement relationship with the FE model. The adequacy of the FE model was validated by comparing the analytical results with the experimental data.

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior (응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정)

  • Kim, W.S.;Hong, S.I.
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.168-176
    • /
    • 2007
  • When the rubber vulcanizates reinforced with carbon black or silica are subjected to cyclic loading from its virgin state, the stress required on reloading is less than that on the initial loading. This stress softening phenomenon is referred to as the Mullins effect. The strain energy function of rubber vulcanizates was investigated using theory of pseudo-elasticity incorporated damage parameter that Ogden and Roxburgh have proposed to describe the damage-induced stress softening effect in rubber-like solids. The quasi-static cyclic loading test was performed using the NR-SBR vulcanizates reinforced with carbon black, and then the effect of a damage parameter to stress-strain curve in reloading and subsequent reloading paths was studied. The strain energy function of the rubber vulcanizates with a different filler content was also evaluated.

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

절삭가공 해석을 위한 유한요소법의 적용

  • 김국원;안태길;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.81-81
    • /
    • 2003
  • 최근 유한요소법을 이용하여 절삭가공을 해석하는 연구가 많이 발표되고 있다. 이 때 가장 문제되는 점이 피삭재에서 칩으로 분리하는 조건이다. 일반적으로 칩 분리 조건이라 일컬어지는 이 조건을 어떻게 설정할 것인가에 대해 현재까지도 많은 연구가 이루어지고 있다. 현재까지 제시된 칩 분리 판별 조건은 두 가지 유형 - 기하학적, 물리적으로 나눌 수 있다. 기하학적 칩 분리 조건은 공구 끝단과 바로 앞 요소의 거리를 기준으로 정해진 특정한 값에 도달하면 요소가 분리되는 혹은 없어지는 방법을 이용하는 것이며(Fig. 1 참조), 물리적 칩 분리 조건은 요소 내의 소성변형률 혹은 변형률 에너지 밀도함수 등의 값을 기준으로 분리시키는 방법이다. 본 연구에서는 상용 유한요소 해석 프로그램인 ANSYS를 이용하였으며 이 프로그램에서 제공하는 element birth/kill 기법을 이용하여 기하학적 판별조건에 도달하면 공구 끝단 앞의 요소가 사라지는 방법을 취하였다. Fig. 2는 절삭가공을 위한 유한요소 모델링을 나타낸다. 칩-공구 접촉 부위에 접촉요소를 사용하였으며, 피삭재의 왼쪽과 아래쪽 부위는 각각 변위구속을 하였다. 공구의 이동은 변위경계조건의 값을 변화시킴으로써 구현하였다. 절삭력을 비교함으로써 해석결과의 타당성을 검토하였으며, 피삭재 내의 응력, 변형률 분포 등을 살펴보았다.

  • PDF

Analysis of FRP-Confined Concrete According to Lateral Strain History (횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석)

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.201-204
    • /
    • 2008
  • The proposed method, capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (Fiber Reinforced Polymers) composites in a rational manner, is based on the fact that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure. The elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. This procedure enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods.

  • PDF

Prediction of Strain Energy Function for Butyl Rubbers (부틸고무의 변형률 에너지 함수 예측)

  • Kim Nam-Woong;Kim Kug-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1227-1234
    • /
    • 2006
  • Up to now, several mathematical theories based on strain energy functions have been developed for rubber materials. These theories, coupled with the finite element method, can be used very effectively by engineers to analyze and design rubber components. However, due to the complexities of the mathematical formulations and the lack of general guidelines available fur the analysis of rubber components, it is a formidable task for an engineer to analyze rubber components. In this paper a method for predicting strain energy functions - Neo-Hookean model and Mooney-Rivlin model - from the hardness using the empirical equation without any experiment is discussed. First based on the elasticity theories of rubber, the relation between stress and strain is defined. Then for the butyl rubbers, the model constants of Neo-Hookean model and Mooney-Rivlin model are calculated from uniaxial tension tests. From the results, the usefulness of the empirical equation to estimate elastic modulus from hardness is confirmed and, fur Mooney-Rivlin model, the predicted and the experimental model constants are compared and discussed.

Evaluation of Fatigue Characteristics of Rubber for Tire Using Strain Energy Density (변형률에너지밀도를 이용한 타이어용 고무의 피로 특성 평가)

  • Ahn, Sang-Soo;Kim, Seong-Rae;Park, Han-Seok;Kang, Yong-Gu;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1163-1169
    • /
    • 2012
  • Rubber, a hyperelastic material, is the main material used in tires. During the operation of a car, the tire receives various types of loads. The accumulation of strain energy due to such loads induces tire failure. Generally, because rubber materials used for tires have stress softening characteristics, unlike metals, test methods used for metals cannot be applied to rubber. Therefore, in this study, for the evaluation of the fatigue properties of two types of specimens that have different material components, a tensile test and a fatigue test according to the extended strain range dissimilar to ASTM D4482 are performed, and fatigue life equations are proposed based on the test results.

Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity (손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석)

  • 송하원;나웅진
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.241-250
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develop a plasticity and damage algorithm for the finite element analysis of the strain-localization in concrete. In this paper, concrete member under strain localization is modeled with localized zone and non-localized zone. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion by which the nonlinear strain softening behavior of concrete after peak-stress can be considered is introduced in a thermodynamic formulation of the classical plasticity model. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is also derived. For the modeling of non-localized zone in concrete under strain localization, a consistent nonlinear elastic-damage algorithm is developed by modifying the free energy in thermodynamics. Using finite element program implemented with the developed algorithm, strain localization behaviors for concrete specimens under compression are simulated.

  • PDF