재무관리의 모든 영역을 완벽하게 이해하기 위하여는 기업재무관리와 투자론을 비롯하여 금융산업 전체에 대한 연역적 방법에 의한 이론의 정립과 실증분석을 통한 이론의 정립이 관건이라 할 수 있다. 이 논문에서는 실증 분석을 수행함에 있어 우리나라에서 활발하게 논의가 진행되지 않는 시계열분석의 영역을 살펴보았다. 그것은 이와 같은 분야를 천착해 봄으로써 이 분야가 재무관리에 대한 통찰력과 현실 적합성의 판단력을 배양하는데 큰 공헌을 할 수 있으리라는 믿음 때문이다. 이 논의를 통하여 시계열 분석에 대한 활발한 연구가 진행되기를 기대하고 있다. 시계열 확률과정에 대한 재무관리이론을 연역적으로 도출하기는 용이하지 않다. 시계열 분석에서 제시되는 여러 방법론을 재무관리의 시계열에 적용하여 그 시계열의 성질과 특성을 파악하면 그것이 그대로 현실에 적용될 수 있을 것이다. 이러한 연구의 결과는 어떤 형태로든 연역적 방법에 의한 이론의 정립에 깊은 영향을 미칠 것이다. 뿐만 아니라 연속시간의 틀과 이시적(異時的) 양태하(樣態下)에서 많은 재무관리 모형들이 개발되고 있으며, 동태적 상황을 해명하는 의도에서 이 모형들이 연구되고 있는 만큼 시계열 분석은 이 분야에 직접적으로 이용될 수 있다. 시계열 분석에서 제시된 많은 모형들이 재무관리의 실증적 현상을 설명하는데 효과적으로 활용될 수 있다. 뿐만 아니라 현재 연역적으로 개발된 모형들이 설명할 수 없는 부분을 시계열 분석이 직접적으로 해명할 수 있는 능력을 확보하고 있음도 제시되었다. 증권의 현가모형(現價模型), 이자율의 기간구조, 효율적 시장가설도 주가의 변동성 등은 시계열 분석의 다양한 기법을 사용하여 검증되어야 하며, 이 경우 특히 분산의 추정방법을 여러 측면에서 개발해 야 할 것이다. 시계열 분석에서는 두개 또는 그 이상의 기법을 하나로 통합하는 방법이 있을 수 있다. ARIMA와 ARCH가 결합되는 것을 본 바 있다. 구조적(構造的) 변화(變化)(structural change)모형(模型)과 ARCH의 결합도 가능하다. 다른 분야로서는 변동성(變動性)에 관한 연구이다. 변동성(變動性)에 관한 연구는 variance bounds test에 한정된 감이 있으나 정보와 변동성의 관계가 중요시되고 있는 만큼 정보집합과 시계열 분석 기법의 결합은 변동성의 연구에 새로운 지평을 열어줄 것으로 보인다. 따라서 정보집합의 형성에 따라 새로운 추정방법이 개발될 여지가 풍부하다.
This paper tries to investigate the relationships among stock return volatility, time-varying risk premium and Korea Discount. Using Korean Composite Stock Price Index (KOSPI) return from January 4, 1980 to August 31, 2005, this study finds possible links between time-varying risk premium and Korea Discount. First of all, this study classifies Korean stock returns during the sample period by three regime-switching volatility period that is to say, low-volatile period medium-volatile period and highly-volatile period by estimating Markov-Switching ARCH model. During the highly volatile period of Korean stock return (09/01/1997-05/31/2001), the estimated time-varying unit risk premium from the jump-diffusion GARCH model was 0.3625, where as during the low volatile period (01/04/1980-l1/30/1985), the time-varying unit risk premium was estimated 0.0284 from the jump diffusion GARCH model, which was about thirteen times less than that. This study seems to find the evidence that highly volatile Korean stock market may induce large time-varying risk premium from the investors and this may lead to Korea discount.
Current financial crisis triggered by shaky U.S. banking system adds to the emphasis on the importance of the volatility in controlling and understanding financial time series data. The ARCH and GARCH models have been useful in analyzing economic time series volatilities. In particular, multivariate GARCH(MGARCH, for short) provides both volatilities and conditional correlations between several time series and these are in turn applied to computations of hedge-ratio and VaR. In this short article, we try to assess various MGARCH models with respect to the back-testing performances in VaR study. To this end, 14 korean stock prices are analyzed and it is found that MGARCH outperforms rolling window, and BEKK and CCC are relatively conservative in back-testing performance.
This study is to propose temporal pattern of design rainfall which causes maximum peak discharge and to analyze the variation in peak discharge according to design rainfall durations. In this study, the Mononobe, the Yen and Chow triangular, the Huff's 4th quartiles and the Keifer and Chu methods are applied to estimate the proper temporal pattern of design rainfall and three rainfall-runoff models such as SCS, Nakayasu, and Clark methods are used to estimate the runoff hydrograph. And to examine the variability of peak discharge, the hydrologic characteristics from the rainfall-runoff models to which uniform rainfall intensity is applied are used as the standard values. The type of temporal pattern of design rainfall which causes maximum peak discharge in both of the watersheds and the rainfall-runoff models has resulted in Yen and Chow distribution method with the dimensionless vague of 0.75. On the basis of determined temporal pattern, the examination of the variability of peak discharge according to design rainfall durations shows that design rainfall duration varies greatly with the types of probable intensity formula, and the variation of peak discharge is more affected by the types of probable intensity formula and I-D-F currie than rainfall-runoff models.
Previous studies, especially that by Lee (2014), showed how time series volatility models can be applied to the house price series. As the regional housing market trends, however, have shown significant differences of late, analysis with national data may have limited practical implications. This study applied volatility models in analyzing and forecasting regional house prices. The estimation of the AR(1)-ARCH(1), AR(1)-GARCH(1,1), and AR(1)-EGARCH(1,1,1) models confirmed the ARCH and/or GARCH effects in the regional house price series. The RMSEs of out-of-sample forecasts were then compared to identify the best-fitting model for each region. The monthly rates of house price changes in the second half of 2017 were then presented as an example of how the results of this study can be applied in practice.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.401-401
/
2011
본 연구는 Bayesian MCMC(Markov Chain Monte Carlo)를 이용한 비정상성 빈도해석 모형에 외부기상인자를 결합하여 계절단위의 강수량을 예측하는데 목적을 두고 있으며, 그 중에서도 홍수 위험도와 관련하여 유용하게 이용될 수 있는 여름강수량을 예측 대상으로 하였다. 비정상성 빈도해석 모형을 기반으로 외부 기상인자에 의한 변동성을 고려하기 위해서는 대상 수문량을 한정할 필요가 있으며 극대치강수량과 연관성이 높은 장마전선, 태풍 등의 기상인자는 공간적 변동성 및 복합적인 특성들로 인해 예측인자를 구성하는 기상인자로 사용하기에는 무리가 있다. 따라서 본 연구에서는 계절단위의 수문량으로 여름강수량을 대상으로 하였으며, 이에 영향을 미치는 외부 기상인자로서 SST(sea surface temperature)와 OLR(outgoing longwave radiation)을 도입하였으며, 낙동강유역 여름강수량과의 공간 상관성이 높은 지역의 이전 겨울 SST와 6월 OLR을 예측인자로 활용한 7~9월 여름강수량 예측모형을 구성하였다. 모형의 검증은 결과를 알고 있는 2010년 여름 강수량을 대상으로 수행하였으며, 모형의 적용은 현재시점에서 관측된 2010년 겨울 SST와, 과거 관측 자료를 토대로 가정된 2011년 6월 OLR을 이용하여 2011년 여름 강수량을 예측하였다. 결과적으로 모형 매개변수들의 사후분포로부터 불확실성 구간을 포함한 예측결과를 구할 수 있었다.
VaR is now widely used as an important tool to evaluate and manage financial risks. In particular, it is important to select an appropriate volatility model for the rate of return of financial assets. In this study, both univariate and multivariate models are considered to evaluate VaR of the portfolio composed of KOSPI, Hang-Seng, Nikkei indexes, and their performances are compared through back testing techniques. Overall, multivariate models are shown to be more appropriate than univariate models to estimate the portfolio VaR, in particular DCC and ADCC models are shown to be more superior than others.
Journal of the Korean Data and Information Science Society
/
v.25
no.6
/
pp.1507-1520
/
2014
In this paper, we show that there is a positive correlation between the level and the volatility of interest rate and thus suggest that a proper interest rate volatility coefficient (IRVC), a factor used in evaluating the interest rate risk that insurers are exposed to, should be chosen in accordance with the level of interest rate. To this end, we calculate the historical volatility of interest rate using data on government bond yields and show a proportionate relationship between interest rate and historical volatility. The review of exponential Vasicek (EV) and Cox-Ingersoll-Ross (CIR) models for interest rate also confirms the positive correlation between them. The estimation of IRVC by EV and CIR models are 0.9 and 1.1, respectively, which are much smaller than the one under the current risk-based capital (RBC) requirement. We provide modified IRVCs reflecting the level of interest by the two interest rate models. Using modified IRVCs can be a more reasonable method to evaluate the interest rate risk that insurers face.
This paper decomposes and estimates trend/cyclical components of some key macro variables-GDP, inflation, and interest rate, using a simple DSGE model along with flexible trend specification. The extracted cyclical components of output and interest rate are similar to HP-filtered counterparts, despite some differences in persistence and volatility, while inflation resembles that from BK filtering. This implies that the usual practice of applying a single filtering method to the data of interest may be problematic. When the baseline model is extended to incorporate consumption habit and price indexation, habit turns out to be important in explaining the persistence of business cycles. Comparison of several alternative models shows that the usual practice of estimation of DSGE model using filtered data leads to biased results. Finally, various sensitivity analyses illustrate that (1) allowing for correlation between structural cyclical shocks and trend shocks and (2) including irregular components (in inflation rate) may deliver interesting/important implication for gap estimates.
The standard GARCH model imposing symmetry on the conditional variance, tends to fail in capturing some important features of the data. This paper, hence, introduces the models capturing asymmetric effect. They are the EGARCH model and the GJR model. We provide the systematic comparison of volatility models focusing on the asymmetric effect of news on volatility. Specifically, three diagnostic tests are provided: the sign bias test, the negative size bias test, and the positive size bias test. This paper shows that there is significant evidence of GARCH-type process in the data, as shown by the test for the Ljung-Box Q statistic on the squared residual data. The estimated unconditional density function for squared residual is clearly skewed to the left and markedly leptokurtic when compared with the standard normal distribution. The observation of volatility clustering is also clearly reinforced by the plot of the squared value of residuals of export volume and values. The unconditional variance of both export volumes and export value indicates that large shocks of either sign tend to be followed by large shocks, and small shocks of either sign tend to follow small shocks. The estimated export volume news impact curve for the GARCH also suggests that $h_t$ is overestimated for large negative and positive shocks. The conditional variance equation of the GARCH model for export volumes contains two parameters ${\alpha}$ and ${\beta}$ that are insignificant, indicating that the GARCH model is a poor characterization of the conditional variance of export volumes. The conditional variance equation of the EGARCH model for export value, however, shows a positive sign of parameter ${\delta}$, which is contrary to our expectation, while the GJR model exhibits that parameters ${\alpha}$ and ${\beta}$ are insignificant, and ${\delta}$ is marginally significant. That indicates that the asymmetric volatility models are poor characterization of the conditional variance of export value. It is concluded that the asymmetric EGARCH and GJR model are appropriate in explaining the volatility of export volume, while the symmetric standard GARCH model is good for capturing the volatility.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.