• Title/Summary/Keyword: 베타-갈락토시데이즈

Search Result 11, Processing Time 0.025 seconds

NMR Spectroscopy and Mass Spectrometry of Benzyl Alcohol Galactoside synthesized using β-Galactosidase (베타-갈락토시데이즈를 이용하여 합성된 Benzyl Alcohol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • To characterize the molecular structure of BzO-gal synthesized using Escherichia coli ${\beta}$-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of BzO-gal were conducted. $^1H$ NMR spectrum of BzO-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on BzOH. Five proton peaks around the aromatic region at ${\delta}_H$ 7.43 ~ 7.24 ppm and 2 peaks from ${\delta}_H$ 4.93 and 4.67 ppm were evidence of the presence of the benzyl group. Seven proton peaks at ${\delta}_H$ 4.32 ~ 3.46 ppm showed the presence of a monosaccharide and were indicative of galactosylation on BzOH. $^{13}C$ NMR spectrum also revealed the presence of 11 carbons suggestive of BzO-gal. The mass value (sodium adduct ion of BzO-gal, m/z = 293.0994) from mass spectrometry analysis of BzO-gal, and $^1H$ and $^{13}C$ NMR spectral data were in good agreement with the expecting structure of BzO-gal. We are expecting that through future study it will eventually be able to develop a new additive of low cytotoxicity.

Optimal Conditions for Phenylethanol Galactoside Synthesis using Escherichia coli β-Galactosidase (대장균 베타-갈락토시데이즈를 이용한 Phenylethanol Galactoside 합성 조건의 최적화)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-106
    • /
    • 2021
  • To circumvent the skin problem from phenylethanol (PhE), we have studied on the enzymatic synthesis of phenylethanol galactoside (PhE-gal) as an alternative to PhE. Base on the previous study, we optimized the reaction conditions for PhE-gal synthesis from PhE using E. coli β-galactosidase (β-gal). The optimal amount of β-gal, PhE concentration, pH, and temperature for PhE-gal synthesis were 0.45 U/ml, 1%, 8.0, 40℃, respectively. Under these conditions, about 81.9 mM PhE was converted into about 47.4 mM PhE-gal, in which the conversion yield was about 57.9%. Meanwhile, when the reaction mixture containing PhE and PhE-gal was mixed and fractionated with water-immiscible solvent (EA or MC), it was observed that PhE-gal was distributed in water phase, and PhE was distributed in solvent phase. Additionally, PhE-gal was clearly distributed into water phase when MC was used, but PE-gal was not when EA was used. In the future, we are planning to carried out the continuing study on developing an alternative cosmetic preservative using PhE-gal.

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1323-1329
    • /
    • 2020
  • To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.

NMR Spectroscopy and Mass Spectrometry of 1, 2-Hexanediol Galactoside synthesized using Escherichia coli β-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 1, 2-Hexanediol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Kim, Yi-Ok;Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.286-292
    • /
    • 2016
  • 1, 2-Hexanediol galactoside (HD-gal) has been synthesized from 1, 2-hexanediol (HD), a cosmetic preservative, using recombinant Escherichia coli ${\beta}$-galactosidase (${\beta}$-gal) at the high lactose concentration (300 g/l). To confirm the molecular structure of synthesized HD-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of HD-gal were conducted. $^1H$ NMR spectrum of HD-gal showed multiple peaks corresponding to the galactocyl group, which is an evidence of galactocylation on HD. Downfield proton peaks at ${\delta}_H$ 4.44 ppm and multiple peaks from ${\delta}_H$3.96~3.58 ppm were indicative of galactocylation on HD. Up field proton peaks at ${\delta}_H$ 1.60~1.35 ppm and 0.92 ppm showed the presence of $CH_2$ and $CH_3$ protons of HD. $^{13}C$ NMR spectrum revealed the presence of 21 carbons suggestive of ${\alpha}$- and ${\beta}$-anomers of HD-gal. Among 12 carbon peaks from each anomers, the 3 peaks at dC 68.6, 60.9 and 13.2 ppm were assigned to be overlapped showing only 21 peaks out of total 24 peaks. The mass value (protonated HD-gal, m/z = 281.1601) from mass spectrometry analysis of HD-gal, and $^1H$ and $^{13}C$ NMR spectral data were in well agreement with the expecting structure of HD-gal. For further study, the minimum inhibitory concentrations (MICs) of HD-gal against bacteria will be investigated, and, in addition, cytotoxicity to human skin cells of HD-gal will be examined. It is expected that it will eventually be able to develop a new cosmetic preservative, which have low cytotoxicity against human skin cell and maintains antimicrobial effect.

The Study of Optimal Conditions for Synthesis and Purification of 1, 2-Octanediol Galactoside (1, 2-Octanediol Galactoside 합성을 위한 최적 조건 및 정제 연구)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • 1, 2-Octanediol (OD) as a cosmetic additive has been used simultaneously as a preservative and humectant. To solve the skin problem by 1, 2-octanediol (OD), we have synthesized 1, 2-octanediol galactoside (OD-gal) using Escherichia coli β-galactosidase (β-gal). Meanwhile, the optimal amount of β-gal, OD concentration, pH, and temperature for OD-gal synthesis were 4.5 U/ml, 150 mM, 7.0, and 37℃, respectively. Under these conditions, 150 mM OD was converted into about 55.9 mM OD-gal during 24 hours, in which the conversion yield (mole basis) was about 37.2%. In addition, OD-gal of 67.4 mg could be purified from a 9 ml reaction mixture, in which the overall synthesis yield from OD to the purified OD-gal was about 34.1% (weight basis) and 16.2% (mole basis), respectively. We are expecting that these results will be helpful to develop a safer additive in the cosmetic industry as basic data.

Water-holding Capacity and Antimicrobial Activity and of 1, 2-Hexanediol Galactoside Synthesized by β-Galactosidase (베타-갈락토시데이즈를 이용하여 합성한 1, 2-Hexanediol Galactoside의 보습력과 항균력에 대한 연구)

  • Kim, Yi-Ok;Jung, Kyung-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.373-379
    • /
    • 2017
  • We carried out the enzymatic synthesis of 1, 2-hexanediol galactoside (HD-gal) by transgalactosylation reaction using recombinant Escherichia coli ${\beta}-galactosidase$ (${\beta}-gal$). The amounts of ${\beta}-gal$ and 1, 2-hexanediol (HD), pH, and temperature, respectively, were first optimized (${\beta}-Gal$, 4.8 U/mL; HD, 75 mM; pH, 7.0; temperature, $37^{\circ}C$). Under these optimal conditions, about 96% HD was converted to HD-gal. When we investigated the water holding capacities (WHCs) of HD and HD-gal using pig epidermis in the concentrations of 84.4, 126.6, 168.8, 211.0 mM, WHC of HD-gal was superior to HD. In particular, at 168.8 mM HD and HD-gal, WHC of HD-gal showed about 20% greater than that of HD. However, it was observed that MIC values against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus of HD-gal were about three to ten times greater than those of HD, although MIC value of HD-gal against Enterococcus faecalis was almost the same as that of HD. Finally, it was concluded that the covalent bonding of a galactose molecule to HD (transgalactosylation) resulted in an increase in WHC of HD-gal and a decrease in anti-bacterial activity.

Purifications of Phenoxyethanol Galactoside and Chlorphenesin Galactoside using Solvent Extraction followed by Gel Chromatography (Solvent Extraction과 Gel Chromatography를 이용한 Phenoxyethanol Galactoside와 Chlorphenesin Galactoside의 정제)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.954-961
    • /
    • 2017
  • We investigated the purifications of PE-gal and CPN-gal, synthesized by transgalactosylation reaction using recombinant ${\beta}$-gal. The reaction mixture containing PE and PE-gal was first mixed with EA, and thereafter PE and PE-gal were distributed in two-phase (EA/water) system. In this system, PE and PE-gal was selectively moved into EA and water phase, respectively. Then, the water phase was collected, and silica gel chromatography was carried out using the collected water phase. Finally, we compared two purified PE-gal samples using HPLC and TLC analysis, in which the one was purified only by silica gel chromatography and the other was purified by EA extraction followed by silica gel chromatography. In the latter case, the residual PE was almost completely removed, whereas, in the former case, the residual PE was remained remarkably. Additionally, the purification yield of PE-gal was about 21% on the basis of mole. In the same purification protocol, CPN-gal was able to be purified using EA extraction followed by silica gel chromatography, in which the residual CPN was almost removed when CPN-gal was purified by EA extraction followed by silica gel chromatography.

Enzymatic synthesis of benzyl alcohol galactoside using Escherichia coli β-galactosidase (대장균 β-galactosidase를 이용한 benzyl alcohol galactoside의 합성 연구)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.572-580
    • /
    • 2019
  • Recently, it has been reported that benzyl alcohol (BzOH) as an additive in cosmetics, food, and medicine lead to toxicity and allergy problem. Then, to circumvent this hurdle, we carried out the synthesis of benzyl alcohol galactoside (BzO-gal). Previously, it was confirmed that BzO-gal was synthesized by transgalactosylation reaction using Escherichia coli (E. coli) ${\beta}$-galactosidase (${\beta}-gal$). Meanwhile, in this study, two peaks of BzO-gal as sodium adduct ion (m/z=293.1004) and protonated ion (m/z=271.1180) were detected in the reaction mixture by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). In addition, the amount of ${\beta}-gal$ and BzOH concentration, temperature, pH, and lactose concentration, respectively, were optimized (${\beta}-gal$, 0.75 U/mL; BzOH, 185 mM; temperature, $40^{\circ}C$, pH, 7.5; lactose, 350 g/l). Under these optimal conditions, 185 mM BzOH was converted into about 131 mM BzO-gal, in which the conversion yield was about 72%. In the future, BzO-gal will be applicable as a substitute for BzOH as a less toxic preservative for the cosmetic, pharmaceutical, and food industries, and we are planning to investigate the characteristics of BzO-gal as a preservative.

Comparative Study of Antimicrobial and Cytotoxic Effects of 1, 2-Octanediol and 1, 2-Octanediol Galactoside (1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구)

  • Kim, Jun-Sub;Jin, Hong-Jong;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.629-637
    • /
    • 2021
  • To develop a safer cosmetic preservative, we carried out a comparative study on characteristics of OD and OD-gal, where OD-gal was synthesized from OD using E. coli β-gal. OD-gal synthesis was confirmed by mass spectrometry analysis as sodium adduct ion (m/z=331.1731) and protonated ion (m/z=309.1926) of OD-gal. To compare the antimicrobial activities of OD and newly synthesized OD-gal, MIC values were investigated using E. coli, S. aureus, C. albicans, and A. niger. As a result, it was observed that there was no remarkable difference between MIC values of OD and OD-gal. In addition, to compare the cytotoxicity of OD-gal and OD, HaCaT cells were treated with OD or OD-gal, and then cell viability was quantified using EZ-Cytox assay. In the case of 1.5% OD, the cell viability was 64% at 24 h and 42% at 48 h compared to the control, and cell viability of 1.5% OD-gal-treated cells showed no significant change at 24 h and was 85% at 48 h. Consequently, the cytotoxicity of OD-gal-treated cells was reduced by more than 40% when compared with that of OD-treated cells. Thus, the newly synthesized OD-gal in this study is safer than the existing OD used as a cosmetic additive. In the future, OD-gal will be applicable as a substitute for OD as a less toxic preservative for the cosmetic industry.

Confirmation of Enzymatic Synthesis of 1, 2-Octanediol Galactoside using Mass Spectrometry and NMR Spectroscopy (Mass spectrometry와 NMR Spectroscopy를 이용한 1, 2-Octanediol Galactoside의 효소합성 확인)

  • Lee, Hyang-Yeol;Jin, Hong-Jong;An, Seung Hye;Lee, Hye Won;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.824-831
    • /
    • 2021
  • 1, 2-Octanediol galactoside (OD-gal) has been synthesized from 1, 2-octanediol (OD), as a safer cosmetic preservative, using recombinant Escherichia coli β-galactosidase (β-gal). To confirm the molecular structure of synthesized OD-gal, mass spectrometry and NMR (1H- and 13C-) spectroscopy of OD-gal were carried out. In the reaction mixture, a sodium adduct ion of OD-gal (m/z=331.1732) was identified using mass spectrometry analysis. In addition, 1H NMR spectrum of OD-gal showed multiple peaks corresponding to the galactosyl group, which is evidence of galactosylation on OD. Downfield proton peaks at δH 4.39 ppm and multiple peaks from δH 3.98~3.55 ppm were indicative of galactosylation on OD. Up field proton peaks at δH 1.52~1.26 ppm and 0.89 ppm showed the presence of CH2 and CH3 protons of OD. 13C NMR spectrum revealed the presence of 24 carbons suggestive of α- and β-anomers of OD-gal. Among 14 carbon peaks from each anomer, the 4 peaks at δC 31.4, 29.0, 22.3, and 13.7 ppm were assigned to be overlapped showing only 24 peaks out of a total of 28 peaks. The mass value from mass spectrometry analysis of OD-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of OD-gal. Finally, we identified a galactose molecule from the hydrolysate of OD-gal using β-gal. We are expecting that through future study it will eventually be able to develop a safe cosmetic preservative.