Browse > Article
http://dx.doi.org/10.15230/SCSK.2017.43.4.373

Water-holding Capacity and Antimicrobial Activity and of 1, 2-Hexanediol Galactoside Synthesized by β-Galactosidase  

Kim, Yi-Ok (Department of Biotechnology, Korea National University of Transportation)
Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.43, no.4, 2017 , pp. 373-379 More about this Journal
Abstract
We carried out the enzymatic synthesis of 1, 2-hexanediol galactoside (HD-gal) by transgalactosylation reaction using recombinant Escherichia coli ${\beta}-galactosidase$ (${\beta}-gal$). The amounts of ${\beta}-gal$ and 1, 2-hexanediol (HD), pH, and temperature, respectively, were first optimized (${\beta}-Gal$, 4.8 U/mL; HD, 75 mM; pH, 7.0; temperature, $37^{\circ}C$). Under these optimal conditions, about 96% HD was converted to HD-gal. When we investigated the water holding capacities (WHCs) of HD and HD-gal using pig epidermis in the concentrations of 84.4, 126.6, 168.8, 211.0 mM, WHC of HD-gal was superior to HD. In particular, at 168.8 mM HD and HD-gal, WHC of HD-gal showed about 20% greater than that of HD. However, it was observed that MIC values against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus of HD-gal were about three to ten times greater than those of HD, although MIC value of HD-gal against Enterococcus faecalis was almost the same as that of HD. Finally, it was concluded that the covalent bonding of a galactose molecule to HD (transgalactosylation) resulted in an increase in WHC of HD-gal and a decrease in anti-bacterial activity.
Keywords
1, 2-hexanediol galactoside; ${\beta}-galactosidase$; transgalactosylation; water holding capacity; minimal inhibitory concentration;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 V. Jadhav, S. Dhande, and V. Kadam, Cosmetics side effects, World J. Pharm. Pharm. Sci., 6, 327 (2017).
2 G. Deza and A. M. Gimenez-Arnau, Allergic contact dermatitis in preservatives: current standing and future options, Curr. Opin. Allergy Clin. Immunol., 17, 263 (2017).   DOI
3 W. Johnson, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, R. C. Shank, T. J. Slaga, P. W. Snyder, and F. A. Andersen, Safety assessment of 1, 2-glycols as used in cosmetics, F. Alan AndersenInt. J. Toxicol., 31, 147S (2012).   DOI
4 E. Lee, S. An, S. -A. Cho, Y. Yun, J. Han, Y. K. Hwang, H. K. Kim, and T. R. Lee, The influence of alkane chain length on the skin irritation potential of 1,2-alkanediols, Int. J. Cosmet. Sci., 33, 421 (2011).   DOI
5 E. Lee, S. An, D. Choi, S. Moon, and I. Chang, Comparison of objective and sensory skin irritations of several cosmetic preservatives, Contact Dermatitis, 56(3), 131 (2007).   DOI
6 S. E. Lee, H. Y. Lee, and K. H. Jung, Production of chlorphenesin galactoside by whole cells of ${\beta}$-galactosidase-containing Escherichia coli, J. Microbiol. Biotechnol., 23, 826 (2013).   DOI
7 S. E. Lee, T. M. Jo, H. Y. Lee, J. Lee, and K. H. Jung, ${\beta}$-Galactosidase-catalyzed synthesis of galactosyl chlorphenesin and its characterization, Appl. Biochem. Biotechnol., 171, 1299 (2013).   DOI
8 H. Y. Lee and K. H. Jung, Enzymatic synthesis of 2-phenoxyethanol galactoside by whole cells of ${\beta}$-galactosidase-containing Escherichia coli, J. Microbiol. Biotechnol., 24, 1254 (2014).   DOI
9 K. H. Jung and H. Y. Lee, Escherichia coli ${\beta}$-galactosidase-catalyzed synthesis of 2-phenoxyethanol galactoside and its characterization, Bioprocess Biosyst. Eng., 38, 365 (2015).   DOI
10 Y. O. Kim and K. H. Jung, Enzymatic synthesis of 1, 2-hexanediol galactoside by whole cells of ${\beta}$-galactosidase-containing recombinant Escherichia coli, J. Life Sci., 26, 608 (2016).   DOI
11 D. Melisi, A. Curcio, E. Luongo, E. Morelli, and M. G. Rimoli, D-Galactose as a vector for prodrug design, Curr. Top. Med. Chem., 11, 2288 (2011).   DOI
12 E. B. Herman, G. J. Haas, W. H. Crosby, and C. J. Cante, Antimicrobial action of short chain alcohols and glycols, J. Food Saf., 2, 131 (1980).   DOI
13 K. A. Fitzgerald, A. Davies, and A. D. Russell, Mechanism of action of chlorhexidine diacetate and phenoxyethanol singly and in combination against gram-negative bacteria, Microbios., 70(284-285), 215 (1992).
14 S. Langsrud, K. Steinhauer, S. Luthje, K. Weber, P. Goroncy-Bermes, and A. L. Holck, Ethylhexylglycerin impairs membrane integrity and enhances the lethal effect of phenoxyethanol, PLoS ONE, 11(10), e0165228. doi:10.1371/journal.pone.0165228 (2016).   DOI
15 K. H. Jung, Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol., 18, 434 (2008).
16 H. Tagami, Electrical measurement of the hydration state of the skin surface in vivo, Br. J. Dermatol., 171, 29 (2014).
17 Y. O. Kim and K. H. Jung, ${\beta}$-Galactosidase-catalyzed synthesis of 1, 2-hexanediol galactoside and its purification using ethyl acetate extraction followed by silica gel chromatography, J. Korean Oil Chem. Soc., 33, 498 (2016).   DOI
18 S. E Lee, H. B. Seo, H. J. Kim, J. H. Yeon, and K. H. Jung, Galactooligosacchride synthesis by active ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cells, J. Microbiol. Biotechnol., 21, 1151 (2011).   DOI
19 F. Kong, C. Galzote, and Y. Duan, Change in skin properties over the first 10 years of life: a cross-sectional study, Arch. Dermatol. Res., 309, 653 (2017).   DOI
20 C. W. Blichmann and J. Serup, Assessment of skin moisture; measurement of electrical conductance, capacitance and transepidermal water loss, Acta. Derm. Venereol., 68, 284 (1988).
21 F. Gioia and L. Celleno, The dynamics of transepidermal water loss (TEWL) from hydrated skin, Skin Res. Technol., 8, 176 (2002).
22 A. K. Haghi, A mathematical model of the drying process, Acta Polytech., 41, 21 (2001).