Browse > Article
http://dx.doi.org/10.12925/jkocs.2016.33.2.286

NMR Spectroscopy and Mass Spectrometry of 1, 2-Hexanediol Galactoside synthesized using Escherichia coli β-Galactosidase  

Kim, Yi-Ok (Department of Biotechnology, Korea National University of Transportation)
Lee, Hyang-Yeol (Department of Biotechnology, Korea National University of Transportation)
Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
Publication Information
Journal of the Korean Applied Science and Technology / v.33, no.2, 2016 , pp. 286-292 More about this Journal
Abstract
1, 2-Hexanediol galactoside (HD-gal) has been synthesized from 1, 2-hexanediol (HD), a cosmetic preservative, using recombinant Escherichia coli ${\beta}$-galactosidase (${\beta}$-gal) at the high lactose concentration (300 g/l). To confirm the molecular structure of synthesized HD-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of HD-gal were conducted. $^1H$ NMR spectrum of HD-gal showed multiple peaks corresponding to the galactocyl group, which is an evidence of galactocylation on HD. Downfield proton peaks at ${\delta}_H$ 4.44 ppm and multiple peaks from ${\delta}_H$3.96~3.58 ppm were indicative of galactocylation on HD. Up field proton peaks at ${\delta}_H$ 1.60~1.35 ppm and 0.92 ppm showed the presence of $CH_2$ and $CH_3$ protons of HD. $^{13}C$ NMR spectrum revealed the presence of 21 carbons suggestive of ${\alpha}$- and ${\beta}$-anomers of HD-gal. Among 12 carbon peaks from each anomers, the 3 peaks at dC 68.6, 60.9 and 13.2 ppm were assigned to be overlapped showing only 21 peaks out of total 24 peaks. The mass value (protonated HD-gal, m/z = 281.1601) from mass spectrometry analysis of HD-gal, and $^1H$ and $^{13}C$ NMR spectral data were in well agreement with the expecting structure of HD-gal. For further study, the minimum inhibitory concentrations (MICs) of HD-gal against bacteria will be investigated, and, in addition, cytotoxicity to human skin cells of HD-gal will be examined. It is expected that it will eventually be able to develop a new cosmetic preservative, which have low cytotoxicity against human skin cell and maintains antimicrobial effect.
Keywords
1, 2-Hexanediol galactoside; ${\beta}$-Galactosidase; NMR spectroscopy; Mass spectrometry; Cosmetic preservative;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 W. Johnson Jr., W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks Jr., R. C Shank, T. J. Slaga, P. W. Snyder, and F. A. Andersen, Safety Assessment of 1, 2-Glycols as Used in Cosmetics. Int. J. Toxicol., 31(5 Suppl), 147S (2012).   DOI
2 E. Lee, S. An, S.-A. Cho, Y. Yun, J. Han, Y. K. Hwang, H. K. Kim, and T. R. Lee, The Influence of Alkane Chain Length on the Skin Irritation Potential of 1, 2-Alkanediols, Int. J. Cosmet. Sci., 33(5), 421 (2011).   DOI
3 S. B. Levy, A. M. Dulichan, and M. Helman, Safety of a Preservative System containing 1, 2-Hexanediol and Caprylyl glycol, Cutan. Ocu.l Toxicol., 28(1), 23 (2009).   DOI
4 S. -E. Lee, T. M. Jo, H. -Y. Lee, J. Lee, and K. -H. Jung, ${\beta}$-Galactosidasecatalyzed Synthesis of Galactosyl Chlorphenesin and its Characterization, Appl. Biochem. Biotechnol., 171(6), 1299 (2013).   DOI
5 Y. -O. Kim and K. -H. Jung, Enzymatic Synthesis of 1, 2-Hexanediol Galactoside by Whole cells of ${\beta}$-Galactosidasecontaining Recombinant Escherichia coli. J. Life Sci., 26(5), 608 (2016).   DOI
6 S. -E. Lee, H. -Y. Lee, and K. -H. Jung, Production of Chlorphenesin Galactoside by Whole Cells of ${\beta}$-Galactosidasecontaining Escherichia coli, J. Microbiol. Biotechnol., 23(6), 826 (2013).   DOI
7 H. -Y. Lee and K. -H. Jung, Enzymatic Synthesis of 2-Phenoxyethanol Galactoside by Whole Cells of ${\beta}$-Galactosidasecontaining Escherichia coli, J. Microbiol. Biotechnol., 24(9), 1254 (2014).   DOI
8 K. -H. Jung and H. -Y. Lee, Escherichia coli ${\beta}$-Galactosidase-catalyzed Synthesis of 2-Phenoxyethanol Galactoside and its Characterization, Bioprocess Biosyst. Eng., 38(2), 365 (2015).   DOI
9 G. D. Benjamin and M. A. Robinson, Drug Delivery Systems based on Sugar-macromolecule Conjugates, Curr. Opin. Drug Discov. Devel., 5(2), 279 (2002).
10 J. Huang, F. Gao, X. Tang, J. Yu, D. Wang, S. Liu, and Y. Li, Liver-targeting Doxorubicin-conjugated Polymeric Prodrug with pH-Triggered Drug Release Profile, Polym. Int., 59(10), 1390 (2010).   DOI
11 N. Bridiau, S. Taboubi, N. Marzouki, M. D. Legoy, and T. Maugard, ${\beta}$ -Galactosidase Catalyzed Selective Galactosylation of Aromatic Compounds, Biotechnol. Prog., 22(1), 326 (2006).   DOI
12 D. Melisi, A. Curcio, E. Luongo, E. Morelli, and M. G. Rimoli, D-Galactose as a Vector for Prodrug Design, Curr. Top. Med. Chem., 11(18), 2288 (2011).   DOI
13 L. F. Tietze and K. Schmuck, Prodrugs for Targeted Tumor Therapies: Recent Developments in ADEPT, GDEPT and PMT, Curr. Pharm. Design, 17(32), 3527 (2011).   DOI
14 L. Q. Yan, N. Li, and M. H. Zong, First Enzymatic Galactosylation of Acyclic Nucleoside Drugs by ${\beta}$-Galactosidase: Synthesis of Water-soluble ${\beta}$-DGalactosidic Prodrugs, Biotechnol. Bioprocess Eng., 19(4), 586 (2014).   DOI
15 K. -H. Jung, Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli, J. Microbiol. Biotechnol., 18(3), 434 (2008).
16 K. -H. Jung, J. -H. Yeon, S. -K. Moon, and J. -H. Choi, Methyl ${\alpha}$-DGlucopyranoside Enhances the Enzymatic Activity of Recombinant ${\beta}$-Galactosidase Inclusion Bodies in the araBAD Promoter System of Escherichia coli. J. Ind. Microbiol. Biotechnol., 35(7), 695 (2008).   DOI
17 C. Scheckermann, F. Wagner, and L. Fischer, Galactosylation of Antibiotics using the ${\beta}$-Galactosidase from Aspergillus oryae, Enzyme Microb. Technol., 20(8), 629 (1997).   DOI