본 논문은 베이지안 네트워크를 기반으로 대규모 유전자 상호작용 네트워크를 추론하기 위한 클라이언트-서버 시스템 구조를 제시한다. 유전체 수준(genome-wide)의 대규모 유전자 상호작용 네트워크를 베이지안 네트워크 형태로 추론하기 위해서는 병렬 서버를 이용하더라도 통상 수십시간이 소요된다. 따라서, 일반적인 대화형(interactive) 독자(standalone) 시스템 구조보다는 배치형(batch) 분산(distributed) 시스템 구조가 적합하다. 본 논문에서는 그와 같은 상황에 적합한 느슨한 연결의 (loosely-coupled) 클라이언트-서버 시스템을 구현할 결과를 기술한다. 유전자 상호작용 네트워크 추론은 크게 두 단계로 나누어진다. 첫째로, 생물주석정보(biological annotation)과 유전자 발현정보(expression data)를 사용하여, 전체 유전자 집단을 서로 중복이 가능한 모듈들로 나누며, 둘째로, 각각의 모듈들에 대해 독립적인 베이지안 학습을 수행하여 추론결과를 얻고, 각 모듈들이 공통으로 포함하는 유전자를 사용하여 각 모듈의 추론결과들을 하나로 통합한다.
대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말하며, 최근 경제여건의 향상 및 식생활 습관의 변화와 함께 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학분야에서 질병의 진단이나 예측모델을 구성하기 위한 방법으로 유용하게 사용되고 있다. 베이지안 네트워크의 구조를 학습하는 대표적인 알고리즘인 K2 알고리즘은 속성이 입력되는 순서의 영향을 받으며, 따라서 이 또한 하나의 주제로써 연구되어 왔다. 본 논문에서는 유전자 알고리즘을 이용하여 베이지안 네트워크에 입력되는 속성 순서를 최적화하며 이 과정에서 의학지식을 적용해 효율적인 최적화가 가능하도록 하였다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행한 결과 속성 순서 최적화 후에 이전보다 향상된 예측율을 보였으며 또한 다층 신경망, k-최근접 이웃 등을 이용한 다른 모델보다 더 높은 예측율을 보였다.
베이지안 네트워크는 변수들간의 원인-결과 관계를 확률적으로 모델링하기 위한 도구로서 소프트웨어 사용자의 목적을 추론하기 위해 널리 이용된다. 행동기반 로봇 설계는 반응적(reactive) 행동 모듈을 효과적으로 결합하여 복잡한 행동을 생성하기 위한 접근 방법이다. 행동의 결합은 로봇의 목표, 외부환경, 행동들 사이의 관계를 종합적으로 고려하여 동적으로 이루어진다. 그러나 현재의 결합 모델은 사전에 설계자에 의해 구조가 결정되는 고정적인 형태이기 때문에 환경의 변화에 맞게 목표를 변화시키지 못한다. 본 연구에서는 베이지안 네트워크를 이용하여 현재 상황에 가장 적합한 로봇의 목표를 설정하여 유연한 행동선택을 유도한다. Khepera 이동로봇 시뮬레이터를 이용하여 실험을 수행해 본 결과 베이지안 네트워크를 적용한 모델이 상황에 적합하게 목적을 선택하여 문제를 해결하는 것을 알 수 있었다.
베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델로서 확실한 수학적 토대를 가지고 있다. 베이지안 네트워크의 구조론 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화 알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구 조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ASIA와 ALARM 네트워크에서 인공적으로 생성한 데이타를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 알 수 있었다.
대화형 에이전트는 언어를 이용하여 사용자에게 적절한 정보를 제공하고 대화의 문맥을 유지하는 시스템이다. 대화형 에이전트를 더욱 현실적으로 만들기 위해서는 사용자 질의에 대한 분석과 모델링 과정이 필수적이며, 베이지안 네트워크가 이를 위한 대표적인 방법 중 하나이다. 보통 대상영역을 위한 네트워크는 매우 복잡하고 이해하기가 어렵기 때문에 네트워크를 구성하는 변수들을 분리함으로써 대화형 에이전트를 보다 쉽게 설계할 수 있다. 본 논문에서는 대화형 에이전트의 질의 분석모듈을 2단계 베이지안 네트워크로 구성하여, 설계를 보다 용이하게 하였고 문형을 고려한 세부적인 질의분석을 가능하도록 하였다. 웹 페이지를 소개하는 에이전트에 적용하여 제안한 대화형 에이전트 구조의 유용성을 보였다.
베이지안 네트워크는 확률이론에 기초해 불확실성이 존재하는 실세계 문제를 해결하는데 많은 기여를 하고 있다. 최근 네트워크 구조를 데이터로부터 자동으로 학습하는 많은 연구가 이루어져 보다 손쉽게 많은 사람들이 사용할 수 있게 되었다. 하지만 한번 학습하여 고정된 네트워크의 구조는 새롭게 수집되는 데이터의 특성을 잘 반영하지 못하는 문제를 지니고 있다. 환경의 변화에 맞게 지속적으로 네트워크 구조를 갱신하기 위한 연구가 진행되고 있으며 본 연구에서는 Lam이 제안한 MDL기반 평가함수를 이용한 진화적 갱신 방법을 제안하여 갱신 성능을 향상시키고자 한다. 벤치마크 네트워크인 ASIA에 대한 실험 결과 제안한 방법이 기존의 지역적 탐색 방법에 비해 향상된 성능을 제공함을 확인하였다.
서비스 로봇 분야에서 물체를 인식하고 장면을 이해하는 것은 매우 중요하다. 전통적인 방법들은 기하학적 모델을 기반으로 물체를 인식하였으나 불확실하고 동적인 환경에서 이러한 방법은 한계를 갖는다. 이에 최근 지식 기반의 접근 방법을 통해 이러한 부분을 보완하는 연구가 이루어지고 있다. 본 논문에서는 효과적인 물체 탐색을 위해 베이지안 네트워크를 사용하여 대상 물체의 존재 여부를 추론하는 방법을 제안한다. 이를 위해 트리구조의 계층적 베이지안 네트워크를 사용하였고 물체들의 관계를 활동을 기준으로 모델링 하였다. 6가지 장소를 기반으로 한 실험 결과, $86.5\%$의 정확도를 보여주었다.
다중프로세서 시스템의 상호연결 네트워크는 주로 다중버스 구조, 십자막대 스위치 구조 또는 다중포트 접속 기억구조로 연결되고 있는데, 본 연구에서는 다중포트 접속 기억구조를 하는 다중프로세서 시스템 상에서 정상적으로 전체 시스템과 다중처리 시스템이 작동할 확률인 시스템 신뢰도와 다중처리 시스템 신뢰도를 추정하는 방법으로서, 미리 알려진 사전정보를 이용하여 좀더 정확하고 유효성이 뛰어난 신뢰도 추정량을 구하는 베이지안 방법을 제안한다.
본 논문에서는 변화하는 환경에서 에이전트의 인지 정보로부터 움직이는 물체의 운동모델을 미리 알 수 없는 경우에도 적용할 수 있는 적응적인 행동을 생성하는 방법을 제안한다. 전통적인 에이전트의 지능제어 방법은 환경에 대해 알고 있는 정보를 이용한다는 제약 때문에 강건하지만 다양하고 복잡한 환경에 적용할 수 얼었다. 환경에 대한 정보가 없는 상황에서 에이전트가 자율적으로 행동하기 위해서는 행동 기반의 방법이 적합하며, 실제와 같은 변화는 환경에서 에이전트의 적응적 행동을 위해서는 상황을 미리 추론하고 대처하는 능력이 필요하다. 움직이는 장애물 피하기는 변화하는 환경에서의 적응적 행동생성의 가능성을 보여줄 수 있는 문제이기 때문에 다양한 방법으로 연구되고 있다. 본 논문에서는 고정된 장애물뿐만 아니라 움직이는 장애물을 인지하고 피하는 적응적인 행동을 생성하기 위한 2단계의 제어 구조를 제안한다. 1단계는 상황을 인지하고 자율적으로 행동을 생성하는 행동 네트워크 구조이고 2단계는 변화하는 상황을 추론하고 제어정보를 1단계로 전달하는 베이지안 네트워크 구조이다. 시뮬레이터를 이용한 실험을 통해 제안한 방법으로 고정된 장애물과 움직이는 장애물을 피하고 목적지를 찾아가는 것을 확인할 수 있었다.
지능형 에이전트가 홈네트워크 환경 속에서 사용자에게 적절한 서비스를 제공하기 위해서는 에이전트가 속한 환경에 대한 모델이 필요하다. 온톨로지는 이러한 환경 모델을 표현하기 위한 유용한 도구로 복잡한 도메인의 조직적 구조 표현에 있어서 뛰어난 성능을 보여준다. 하지만 전통적 온톨로지는 크리스프 로직에 기반하기 때문에 현실세계의 불확실성을 표현하기에는 적합하지 않다. 본 논문에서는 온톨로지의 이러한 한계점을 보완하고, 불확실한 환경 속에서 지능형 홈 에이전트가 적절한 의사결정을 내릴 수 있도록 하는 베이지안 네트워크기반 온톨로지 추론 방법을 제안한다. 제안하는 방법에서는 온톨로지의 클래스 객체를 베이지안 네트워크의 노드로 나타내고, 객체 속성(object property)을 아크로 표현함으로써, 확률적 추론이 가능한 온톨로지를 제공한다. 몇 가지 시나리오와 설계 복잡도 분석을 통해서 제안하는 방법의 유용성을 평가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.