• Title/Summary/Keyword: 백스테핑 제어

Search Result 62, Processing Time 0.027 seconds

Design of an Adaptive Backstepping Position Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 위치제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1227-1229
    • /
    • 2007
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the position of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.

  • PDF

Adaptive Backstepping Control of Induction Motors Using Neural Network (신경회로망을 이용한 유도전동기의 적응 백스테핑 제어)

  • Lee, Eun-Wook;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.452-455
    • /
    • 2003
  • Based on a field-oriented model of induction motor, adaptive backstepping approach using neural network(RBFN) is proposed for the control of induction motor in this paper. In order to achieve the speed regulation with the consideration of avoiding singularity and improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. rotor resistance uncertainty is compensated by adaptive backstepping and mechanical lumped uncertainty such as load torque disturbance, inertia moment, friction by RBFN. Simulation is provided to verify the effectiveness of the proposed approach.

  • PDF

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots (이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어)

  • Yoo Sung-Jin;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters (미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어)

  • Lee, Keun Uk;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems (퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선)

  • 박재훼;진태석;이만형
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot, which is affected by the derived velocity reference by a kinematic controller. To improve the performance of conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. In this paper, the new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. And simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Analysis of Attitude Control Characteristics for an Underactuated Spacecraft Using a Single-Gimbal Variable-Speed CMG (1축 가변속 CMG를 장착한 부족구동 위성의 자세제어 특성 분석)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.437-444
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has one single-gimbal variable-speed CMG. An underactuated spacecraft may not converge to arbitrary attitudes if its total angular momentum is not zero. To stabilize a spacecraft, the CMG has to align with the angular momentum in the inertial frame. Four different install configurations for the CMG have been considered and controllable angular momentums have been analyzed. Also, based on the backstepping method, stabilizing control laws have been presented and their properties have been compared.

Robust Backstepping Design of Nonlinear Systems Using Adaptation Strategy for Uncertaninties (불확실성 적응기법을 이용한 비선형 시스템의 강인 백스테핑 설계)

  • Kim, Dong-Heon;Kim, Eung-Seok;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.605-613
    • /
    • 2001
  • In this paper, we design a robust adaptive controller for a nonlinear system with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered has unknown nonlinear functions being influenced by external disturbance. The upper bound of unknown nonlinear functions at each time is estimated by using a disturbance adaptation law. The estimated nonlinear functions are used to design a stabilizing function a control input. Tuning function is used to estimates unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically. The effectiveness of the proposed controller is investigated by computer simulation.

  • PDF

Design of Robust Adaptive Backstepping Controller for Speed Control of Separately Excited DC Motor (타여자직류기의 속도제어를 위한 강인 적응 백스테핑 제어기 설계)

  • Hyun, Keun-Ho;Son, In-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.80-88
    • /
    • 2005
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor with uncertainties and disturbances. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation and experiment results are provided to demonstrate the effectiveness of the proposed controller.

Adaptive Backstepping Controller Design for a Separately Excited DC Motor Using Speed Observer (속도관측기를 활용한 타여자직류전동기의 적응 백스테핑 제어기 설계)

  • Hyun Keun-Ho;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.385-392
    • /
    • 2003
  • A nonlinear speed controller for a separately excited DC motor (SEDCM) based on a newly developed adaptive backstepping approach is presented. To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically step by step through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe real speed and track the reference speed signal generated by a reference model.