• Title/Summary/Keyword: 배합특성

Search Result 1,644, Processing Time 0.028 seconds

Mechanical Properties of Organoclay filled NR/BR Blends (Organoclay로 보강된 NR/BR Blends의 기계적 특성)

  • Kim, W.;Kim, S.K.;Kim, S.K.;Chuug, K.H.;Byun, J.Y.
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.51-60
    • /
    • 2004
  • The cure, viscoelastic and mechanical characteristics of organoclay filled NR/BR blends were studied and compared with the properties of carbon black and silica filled NR/BR blends. The nanocomposites with extensive exfoliation state can be fabricated by a solution mixing method. In the composites, the amount of filler content was fixed to 10 phr. Degree of intercalation and exfoliation was characterized by X-ray diffraction (XRD). XRD results indicated exfoliation of the silicate layers into the rubber matrix. While the degree or intercalation and exfoliation is lowered by the conventional mixing method, extensive exfoliation can be obtained by the solution mixing method. It was found that the clay filled NR/BR compound showed better viscoelastic (tan ${\delta}$) and mechanical properties than the carbon black or silica filled NR/BR compounds.

Effect of VAE Type Powder Polymer on Strength Properties of High Strength Polymer Cement Mortars (VAE 분말수지가 고강도 폴리머 시멘트 모르타르의 강도 특성에 미치는 영향)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Ko, Kyung-Taek;Ryu, Gum-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • In construction materials area, many research on polymer for cement-based materials have been conducted. In spite of these research, general research scope is limited to the normal strength range, and thus in this research, for both normal and high strength range mixtures, the strength and mechanical properties of high strength cement mortar incorporating Vinyle Acetate-Ethylene(VAE) type powder polymer are evaluated. As a result of experiment, in the case of high strength mixture, as the amount of VAE polymer addition was increased the compressive and flexural strengths were decreased while the tensile and bonding strengths were increased because of the formation of the polymer membrane inside of the mortar matrix.

Studies on Adhesion Properties between Zinc-Coated Steel Cord and Adhesion Promoter-Containing Rubber Compound (아연 코팅된 스틸코드와 접착증진제가 적용된 고무 Compound와의 접착특성 연구)

  • Ko, Sang Min;Choi, Hee Seok;Son, Woo Jung;Kang, Sin Jung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, properties of adhesion between adhesion promoter-containing rubber compound and zinc coated steel cord was investigated. Cobalt salt, resorcinol formaldehyde resin (RF resin) and hexamethoxymethylmelamine (HMMM) were used to adhesion promoter. Since cobalt salts accelerate sulphidation rate of zinc at zinc coated steel cord surface, pullout force of rubber compound applying cobalt salts was increased compared to that of rubber compound without applying cobalt salts. Pullout force and rubber coverage of rubber compounds applying all adhesion promoters were superior because strong interlocking between rubber matrix increased modulus due to applying RF resin and HMMM and grown zinc sulfides at zinc coated steel cord surface.

An Experimental Study on the Setting Time and Compressive strength of Mortar using Ferronickel Slag Powder (페로니켈슬래그 미분말을 사용한 모르타르의 응결시간 및 압축강도특성에 관한 실험적 연구)

  • Kim, Young-Uk;Kim, Do-Bin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.551-558
    • /
    • 2018
  • This study evaluate the fluidity and hardening properties of mortar by replacement ratio of ferronickel slag powder to estimate the applicability of ferronickel slag powder for cement replacement materials. Ferronickel slag powder was replaced by 0, 5, 10, 15 and 20% of the cement weight. In addition, blast furnace slag powder and fly ash were also used for comparing with the mixtures using ferronickel slag powder. As the test results, the micro-hydration heat of the mixture containing the ferronickel slag powder was lower than that of the mixtures containing the same amount of blast furnace slag powder and fly ash. The flow of the sample with ferronickel slag powder was relatively higher than the other mixtures. In all ages, the compressive strength of the mixture with ferronickel slag powder and fly ash was similar to that of the mix containing only fly ash. In case of drying shrinkage, the mixture containing ferronickel slag powder exhibited lower drying shrinkage than the mixture using blast furnace slag powder, and similar to the mixture containing fly ash.

Comparison of Physical Properties of Permeability Concrete Using Acrylic Polymer (아크릴 폴리머를 사용한 투수 콘크리트의 물성 비교 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.265-271
    • /
    • 2019
  • The aim of this paper was to improve the shortcomings of Pitcher Concrete, a conventional ethylene-based polymer used in combination with the other components, and present basic data for use as improved road pavement material by applying an acrylic polymer. Existing ethylene polymer-based pitcher concrete materials were selected. Acrylic polymer was then added and the resulting mixture was evaluated. The compressive strength of the existing ethylene-based polymer pitcher concrete combination was low due to the large air gap, and a compressive strength of 24MPa was observed on the 28th day of road use, as defined by KS for an acrylic polymer-based pitcher concrete combination. Regarding the bending strength, the combined strength of the acrylic polymer-based pitcher concrete was excellent, and the factor of the pitcher was measured above the reference, 0.1(mm/s), in all variables. All parameters measured were less than 1%. The acrylic polymer mixing characteristics were able to maintain the dynamic modulus of elasticity for more than 120 cycles, but not more than 80 cycles for the other combinations. Therefore, the addition of more acrylic polymer than conventional ethylene polymer base is effective in improving the durability.

Effects of Cooking Methods and Ingredients Ratio on Quality Characteristics of Yackwa (조리방법 및 재료 배합 비율이 약과의 품질 특성에 미치는 영향)

  • Ihm, Eun-Young;Oh, Myung-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 1997
  • Effects of frying temperature, kneading degree and ingredients ratio of sesame oil, syrup and sozu on quality characteristics were studied. Mixture experiments were used for the variation of three components. L-value was significantly high at $120^{\circ}C$ and was increased by increasing the kneading degree. a-value was increased by increasing the frying temperature, however there were no significant differences as the kneading degree was changed. Hardness of yackwa was increased by increasing the frying temperature and the kneading degree. Fat absorption rate was decreased as the frying temperature and the kneading degree were increased. Dip syrup absorption rate was increased by decreasing the frying temperature, however there were no significant differences as the kneading degree was changed. There were no clear relationships between color value and ingredients ratio. Hardness of yackwa was increased by increasing the amount of sesame oil and sozu and decreased by increasing the amount of syrup. Fat absorption rate was increased by increasing the amount of sesame oil and syrup. Dip syrup absorption rate was increased by increasing the amount of syrup and by decreasing the amount of sesame oil and sozu.

  • PDF

A Study on Expansion and Strength Characteristics of Material for Emergency Restoration in Ground Cavity (지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구)

  • Han, Jin-Gyu;Ryu, Yong-Sun;Kim, Dongwook;Park, Jeong-Jun;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • In this study, the expansion and compressive strength tests of emergency restoration material were carried out to restore cavity causing ground subsidence. The expansion and compressive strength characteristics according to component ratio of main material - hardener and mix proportion of blowing agent - accelerator were analyzed based on the test results. As a result of the relationship of curing time - expansion ratio analyses, it confirmed that expansion ratio decreased with reduced curing time regardless of mix proportion of blowing agent - accelerator in main material, if component ratio of hardener increased. This means that component ratio of the main material - hardener had greatly affected the expansion ratio. The compressive strength characteristics of emergency restoration material confirmed that strength was affected by mix proportion of blowing agent - accelerator. Therefore, it is necessary to apply reasonable component ratio and mix proportion to consider the required injection time, expansion ratio and strength of restoration material, when emergency restoration in ground cavity is required.

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

불소고무의 특성과 용도

  • Ohzeki, Masahiro
    • Elastomers and Composites
    • /
    • v.30 no.4
    • /
    • pp.263-268
    • /
    • 1995
  • 극심한 내열, 내화학성이 요구되는 곳에 사용하는 불소고무는 최적의 불소고무를 선택하고 배합비율을 조절함으로써 사용용도별로 요구되는 특수한 물리화학적 특성뿐만 아니라 여러 가지 성형방법에 따른 공정상의 요구조건을 만족시킬 수 있다.

  • PDF

A Study on the Strength, Drying Shrinkage and Carbonation Properties of Lightweight Aggregate Mortar with Recycling Water (회수수를 사용한 경량골재 모르타르의 강도, 건조수축 및 중성화 특성에 관한 연구)

  • Oh, Tae-Gue;Kim, Ji-Hwan;Bae, Sung-Ho;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.391-397
    • /
    • 2020
  • This study is to compare and analyze the strength, drying shrinkage and carbonation properties of lightweight aggregate mortar using recycling water as prewetting water and mixing water. The flow, compressive strength, split tensile strength, drying shrinkage and carbonation depth of lightweight aggregate mortar with recycling water were measured. As test results, the mortar flow was similar in all mixes regardless of the recycling water content. The compresseive strength of the RW5 mix with 5% recycling water as prewetting water and mixing water was the highest value, about 53.9 MPa after 28 days. In addition, the tensile strength of lightweight mortar was about 3.4 to 3.8 MPa, indicating 7 to 9% of the compressive strength value regardless of recycling water content. In the case of drying shrinkage, the RW2.5 mix using 2.5% recycling water showed the lowest shrinkage rate as about 0.107% at 56 days. The drying shrinkage of the plain mix without recycling water was relatively higher than the RW2.5 and RW5 mix. The RW5 mix showed lowest carbonation depth compared to other mixes. In this study, the RW5 lightweight aggregate mortar with 5% recycling water exhibits excellent compressive strength and carbonation resistance. Therefore, it is considered that if the recycling water, a by-product of the concrete industry, is properly used as prewetting water and mixing water of lightweight mortar and concrete, it will be possible to increase the recycling rate of the by-product and contribute to improve the property of lightweitht aggregate mortar and concrete.