• Title/Summary/Keyword: 배기가스특성

Search Result 625, Processing Time 0.031 seconds

A Study on the PCBs-containing Waste Treatment by High Temperature Incineration (고온소각에 의한 PCBs 함유 폐기물처리에 관한 연구)

  • Kim, Seong-Jung;Kim, Dong-Hyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.88-95
    • /
    • 2009
  • This study is for understanding the domestic possibilities of the high temperature incineration of waste containing Polychlorinated Biphenyls (PCBs) with the analysis of normal operation case and waste gas, fly ash, dioxin about bottom ash, Total-PCBs, Co-PCBs, and the for analysis the heavy metal leaching feature included by bottom ash and fly ash, heavy metal leaching experiment was implemented. The result shows the dioxin density of the waste gas from waste containing PCBs was $0.00699{\sim}0.00763ng-TEQ/Nm^3$, which is lower than $0.0192ng-TEQ/Nm^3$ from the normal operation case. And each Co-PCBs and total PCBs shows $0.00043{\sim}0.00112ng-TEQ/Nm^3$ and $3.06{\sim}3.87ng/m^3$ respectively. The bottom ash test result shows Dioxin 0.00225~0.00630ng-TEQ/g, Co-PCBs 0.00027~0.00082ng-TEQ/g, Total PCBs 0.9~2.6ng/g, and the fly ash shows Dioxin 0.00164~0.00344ng-TEQ/g, Co-PCBs 0.00053~0.00054ng-EQ/g, Total PCBs 0.64~0.84ng/g. The bottom ash and fly ash experiments for heavy metal leaching did not show any leaching but when it comes to the ingredients of the fly ash, Pb elements shows 31.01~237.7ppm, higher than leaching criterion. The analysis of the density of all air pollution material from the waste gas shows the lower value than permissible criterion.

  • PDF

Synthesis and Magnetic Properties of $Fe-TiO_2$ Nanocomposite Powders by Mechanical Alloying (기계적 합금화법에 의한 $Fe-TiO_2$ Nanocomposite의 합성 및 자기적 성질)

  • 홍대석;이성희;이충효;김지순;권영순
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.63-63
    • /
    • 2002
  • 현재 기계적 합금화법에서는 주로 합금을 구성하는 성분원소 분말을 불활성분위기에서 볼밀처리 함으로써 함금화를 시키거나 모합금에 산화물을 분산시켜 복합화시키는 공정을 통하여 각종 화합물, 비정질상 및 과포화고용체등의 준안정상의 합성 뿐만이 아니라 초미세조직의 생성에 관한 폭 넓은 분야의 연구가 행하여지고 있다. 한편 MA에서는 볼멀처리중 기계적 에너지의 투여에 의하여 실제 반응온도보다 낮은 온도에서 발생하는 특이한 화학반응 즉 Mechanochemical 반응을 일으키 기도 한다. 본 연구에서는 헤마타이트($Fe_20_3$)와 금속윈소인 Ti의 MA처리에 의하여 고상환원반응 을 유기시켜 $Fe-TiO_2$계 nanocomposite 분말재료를 제조하고자 한다. 특히 MA 공정에 있어서 자기 물성의 변화와 X선 회절을 통하여 고상환원반응에 의한 복합분말의 생성과정을 조사하였다. 출발원료는 $Fe_20_3$(고순도화학제,99.9%, 평균입경 0.1$\mu\textrm{m}$)와 금속원소인 Ti(99.9%, 명균업경 150$\mu\textrm{m}$)을 몰비 2:3의 조성이 되도록 하여 MA를 실시하였다. 볼멀은 고에너지 유성형 볼밀장치(독일 제, Fritsch P-5)를 이용하였으며 진공치환형 용기에 원료분말을 장입하여 2회정도 진공배기한 후 아르곤 가스를 충전하여 볼밀을 행하였다. 얻어진 분말시료에 대하여 x-선 회절장치, 전자현미경 (SEM) 및 진동시료형자력계(VSM)를 통하여 결정구조, 미셰조직 빛 자기특성을 조사하였다. $Fe_2O_3-Ti$ 혼합분말의 MA처리 에 의하여 초기단계부터 환원반응과 함께 $Fe_3TIO_{lO}$ 중간상이 관찰 되었으나 30hrs의 MA처리 후 Fe와 산화물 $TiO_2$로 모두 환원되어 $Fe-TiO_2$계 나노복합분말이 얻어짐을 알 수 있었다. 이 때 X션 회절피크의 line broadening으로부터 복합분말의 Fe 명균 결정립 크기는 24nm로 초미세 결정럽의 분말합금이었다. 포화자화값은 볼밀처리에 따라 점점 증가하여 MA 30시간에는 20.3emu/g로 포화됨을 알 수 있었다. 또한 보자력 Hc는 MA초기단계에 350e로 매우 낮으나 30시간 후에는 Hc값이 2600e로 매우 큰 값을 나타내었다. 이것은 환원반응결과 초기에 생성된 Fe의 결정립이 비교적 크고 결정결함이 적으나 볼밀처리를 30시간까지 행하면 Fe 결정렵의 미세화 빛 strain 증가로 magnetic hardening이 일어나기 때문인 것으로 사료된다.

  • PDF

Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel (터널 배수공의 재질에 따른 스케일 부착 특성에 관한 연구)

  • Chu, Ickchan;Nam, Seunghyuk;Baek, Seungin;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.51-57
    • /
    • 2011
  • The calcium hydroxide($Ca(OH)_{2}$) which is flowed into the deteriorated tunnel by groundwater is reacted with carbon dioxide($CO_{2}$) and the vehicle's exhaust gas ($SO_{3}$). So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. Most by-products are composed of $CaCO_{3}$ with calcite from a chemical experiment. The purpose of this study is mainly focused on comparison of attachment on each material of drainage pipe (teflon-coated steel pipe, silicon-Oil coated pipe, acrylic pipe and PVC pipe). The test was progressed to disembogue the CaO aqueous solution and tunnel outflow into each of the pipes. The experimental results show that the most produced scale pipe is PVC material and the followings are Acrylic pipe, Silicon-Oil coating pipe and Teflon coating pipe. But the long-term test results showed that teflon-coated steel pipe had a problem with durability because soil which was contained in the tunnel outflow occurred detachment of coating and corrosion of the steel pipe.

Characterization of crystal phase evolution in cordierite honeycomb for diesel particulate filter by using rietveld refinement and SEM-EDS methods (Rietveld 정밀화법과 SEM-EDS 분석에 의한 DPF용 코디어라이트 하니컴 세라믹스의 결정성장 과정 분석)

  • Chae, Ki-Woong;Kim, Kang San;Kim, Jeong Seog;Kim, Shin-Han
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.116-126
    • /
    • 2021
  • Diesel particulate filter (DPF) is a typical application field of cordierite (Mg2Al4Si5O18) honeycomb. Green body for DPF honeycomb was extruded using slurry paste and sintered at the temperature range of 980~1450℃. Quantitative crystal phase analysis was carried out by using Rietveld refinement method for powder XRD data. In conjunction with the quantitative Rietveld analysis, SEM-EDS analysis was carried for the crystal phases (indialite, cordierite, cristobalite, alumina, spinel, mullite, pro-enstatite). After removing amorphous phase on the sintered surfaces by chemical etching method, the shape and composition of the crystal phases can be clearly identified by SEM-EDS method. By combining the Rietveld refinement method and SEM-EDS analysis, crystal phase evolution process in DPF cordierite ceramics could be clarified. In addition, the coefficient of thermal expansion (CTE) of the DPF honeycombs were measured and compared with the calculated CTEs based on the quantitative crystal phase analysis results.

Analysis of Emission Characteristics and Emission Factors of Carbon Monoxide and Nitrogen Oxide Emitted from Wood Pellet Combustion in Industrial Wood Pellet Boilers Supplied According to the Subsidy Program of Korea Forest Service (산림청 지원사업에 따라 보급된 산업용 목재펠릿보일러에서 목재펠릿 연소 시 배출되는 일산화탄소와 질소산화물의 배출 특성 및 배출계수 분석)

  • Kang, Sea Byul;Choi, Kyu Sung;Lee, Hyun Hee;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.597-609
    • /
    • 2018
  • Korea Forest Service has supplied 76 industrial wood pellet boilers from 2011 to 2015 through subsidy programs. Since carbon monoxide (CO) and nitrogen oxides ($NO_x$) generated during boiler combustion are substances that lead to death in the case of acute poisoning, it is very important to reduce emissions. Therefore, the CO and $NO_x$ emission values of 63 boilers excluding the hot air blower and some boilers initially supplied were analyzed. The emission factor was also calculated from the measured exhaust gas concentration (based on exhaust gas $O_2$ concentration of 12%). The average value of CO emitted from industrial wood pellet boilers was 49 ppm and it was confirmed that the CO concentration was decreasing as the years passed. The emission factor of CO was 0.73 g/kg. The average value of $NO_x$ emitted from industrial wood pellet boilers was 67 ppm and the emission factor of $NO_x$ was 1.63 g/kg. Unlike CO, there was no tendency to decrease according to the installation year. Both CO and $NO_x$ measurements met the limits of the Ministry of Environment. These $NO_x$ emission factors were compared with the $NO_x$ emission factors produced by certified low $NO_x$ burners. The $NO_x$ emission factor of industrial wood pellet boilers was about 1.9 times that of certified low $NO_x$ LNG combustors and about 0.92 times that of coal combustion.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.

Monitoring of Polycyclic Aromatic Hydrocarbon Residues in Environmental Samples in Korea (국내 PAHs 오염 우려지역의 환경 시료 중 PAHs 잔류량 모니터링)

  • Lim, Jong-Soo;Kim, Seong-Soo;Park, Dong-Sik;Joo, Jin-Ho;Lim, Chun-Keun;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.95-105
    • /
    • 2007
  • The aim of this study was to determine the residual amounts of PAHs in environmental samples such as crop, soil and water collected from paddy, upland fields and forestlands near industrial zone and/or a thermal power plant in South Korea. All of the samples were analyzed by GC-mass spectrometer. The average contents of total PAHs in soil samples were 140.2 ${\mu}g\;kg^{-1}$ and the range was from 4.3 to $662.9{\mu}g\;kg^{-1}$. The detection of benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene and dibenzo(a,h) anthracene which have strong carcinogenecity was ranged from 14.2 to 167.8 ${\mu}g\;kg^{-1}$. The residual amounts and detection frequency of PAHs in soil samples from the iron and heavy industrial areas near Pohang and Busan were 3-folds more than those of the other areas. Amounts of PAHs in upland soil samples was 1.5 folds higher than those of paddy soil samples, suggesting that it may be related to the content of organic matter in soil. The average contents of total PAHs in crop samples were 9.7 ${\mu}g\;kg^{-1}$ which ranged from 4.5 to 52.2 ${\mu}g\;kg^{-1}$. However, the residual amounts of PAHs in water samples were not detected. These results showed that soils and crops were slightly contaminated with PAHs. Therefore, the investigation should be continued for evaluating a safety or risk assessment through expansion of regions and crops.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea (서울 성동구 지역 미세먼지의 화학적 조성에 관한 연구)

  • 조용성;이홍석;김윤신;이종태;박진수
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.665-676
    • /
    • 2003
  • To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.

Studies on the Deactivation-resistant Ru Catalyst (Ru 촉매의 비활성화 억제를 위한 연구)

  • Kim, Young-Kil;Yie, Jae-Eui;Cho, Sung-June;Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.808-818
    • /
    • 1994
  • Effects of ceria additive on the activity and thermal aging behavior of supported Ru catalysts were investigated using Ru/${\gamma}$-$Al_2O_3$and Ru/$CeO_2$-${\gamma}$-$Al_2O_3$. The catalysts were characterized by $^{129}Xe$-NMR and $H_2$ chemisorption. The cataltic activity for conversion of CO, HC and $NO_x$ was measured using simulated automobile engine exhausts under lean, rich and stoichiometric conditions. For both fresh and aged catalysts, Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was more active than Ru/${\gamma}$-$Al_2O_3$ for all three pollutants. Results of $^{129}Xe$-NMR and $H_2$ chemisorption indicated that sintering of Ru particles occurred to the same extent for both catalysts during the thermal aging process. After thermal aging at 673K, however, the catalytic activity of the aged Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was substantially higher than that of the fresh one, while the activity of Ru/${\gamma}$-$Al_2O_3$ decreased after the thermal aging. This finding may suggest new active sites were created during the thermal aging, probably in the vicinity of the interface between Ru and Ce. For more quantitative investigation of the effect of a cation such as Ce on the thermal aging of Ru metal particles, Ru catalysts supported on cation-exchanged Y-zeolites were used as the model catalysts. The results indicated that when Ba, Ca, La, Y or Ce was used for the cation exchange, the exchanged cation did not affect the thermal aging behavior of Ru in Y-zeolite, as evidenced by $^{129}Xe$-NMR and EXAFS.

  • PDF