Browse > Article
http://dx.doi.org/10.5322/JES.2003.12.6.665

A Study on Chemical Composition of Fine Particles in the Sungdong Area, Seoul, Korea  

조용성 (한양대학교)
이홍석 (한양대학교)
김윤신 (한양대학교)
이종태 (이화여자대학교)
박진수 (서울시립대학교 환경공학과)
Publication Information
Journal of Environmental Science International / v.12, no.6, 2003 , pp. 665-676 More about this Journal
Abstract
To investigate the chemical characteristics of PM$\_$2.5/ in Seoul, Korea, atmospheric particulate matters were collected using a PM$\_$10/ dichotomous sampler including PM$\_$10/ and PM$\_$2.5/ inlet during the period of October 2000 to September 2001. The Inductively Coupled Plasma-Mass Spectromety (ICP-MS), ion Chromatography (IC) methods were used to determine the concentration of both metal and ionic species. A statistical analysis was performed for the heavy metals data set using a principal component analysis (PCA) to derived important factors inherent in the interactions among the variables. The mean concentrations of ambient PM$\_$2.5/ and PM/sub10/ were 24.47 and 45.27 $\mu\textrm{g}$/㎥, respectively. PM$\_$2.5/ masses also showed temporal variations both yearly and seasonally. The ratios of PM$\_$2.5/PM$\_$10/ was 0.54, which similar to the value of 0.60 in North America. Soil-related chemical components (such as Al, Ca, Fe, Si, and Mn) were abundant in PM$\_$10/, while anthropogenic components (such as As, Cd, Cr, V, Zn and Pb) were abundant in PM2s. Total water soluble ions constituted 30∼50 % of PM$\_$2.5/ mass, and sulfate, nitrate and ammonium were main components in water soluble ions. Reactive farms of NH$_4$$\^$+/were considered as NH$_4$NO$_3$ and (NH$_4$)$_2$SO$_4$ during the sampling periods. In the results of PCA for PM$\_$2.5/, we identified three principal components. Major contribution to PM$\_$2.5/ seemed to be soil, oil combustion, unidentified source. Further study, the detailed interpretation of these data will need efforts in order to identify emission sources.
Keywords
$PM_{2.5}$ $PM_{10}$ dichotomous sampler; PCA(principal component analysis);
Citations & Related Records
연도 인용수 순위
  • Reference
1 천만영, 김희강, 1995, 생성메카니즘에 따른 부유분진중 입자상 nitrates 농도, 한국대기보전학회지, 11, 37-44.
2 Clark, A.G., G.A. Azadi-Boogar and G.E. Andrews, 1994, Particle size and chemical composition of urban aerosols, The Sci. Total Environ., 235, 15-24.
3 Monn, C.H., A. Fuchs, D. Hogger, M. Junker, D. kogelschatz, N. Roth and H.U. Wanner, 1997, Particulate matter less than $10{\mu}m$ (PM10) and fine particles less than $2.5{\mu}m\;(PM_{2.5})$ : relationships between indoor, outdoor and personal concentrations, The Sci. Total Environ., 208, 15-21.   DOI   ScienceOn
4 강충민, 이승일, 조기철, 안준영, 최민규, 김희강, 1999, Annular Denuder System을 이용한 수도권지역의 산성오염물질 및 $PM_{2.5}$ 성분농도 특성, 한국대기환경학회지, 15, 305-315.   과학기술학회마을
5 Reichhardt, T., 1995, Weighing the health risks of airborne particulates, Environ. Sci. & Tech., 29, 360A-364A.   DOI
6 Gartrell, G. and S.K. Friedlander, 1975, Relating particulate pollution to source - the 7972 Califormia aerosol characterization study, Atmos. Environ., 9, 279-289.   DOI   ScienceOn
7 Chow, J.C., 1995, Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air & Waste Manage. Assoc., 45, 320-382.   DOI   ScienceOn
8 최종성, 2000, 현대통계분석, 복두 출판사.
9 Seaton, A., W. MacNee, K. Donaldson and D. Godden, 1995, Particulate air pollution and acute health effects, Lancet, 345, 176-178.   DOI   ScienceOn
10 Hopke, P., 1985, Receptor modeling in environmental chemistry, John Wiley & Sons.
11 Whitby, K.T., 1978, The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135-159.   DOI   ScienceOn
12 Seinfeld, J.H., 1986, Atmospheric chemistry and physics of air pollution, John Willey and Sons, New York.
13 Possanzini, M., P. Masia and V.D. Palo, 1992, Speciation of ammonium-containing species in atmospheric aerosols, Atmos. Environ., 26, 1995-2000.   DOI   ScienceOn
14 이동수, 최만식, 1990, 우리나라 대기 분진중의 화학조성에 관하여, 제11회 대기보전학회 학술 연구발표회 요지집, 20-21pp.
15 Seinfeld, J.H. and S.N. Pandis, 1998, Atmospheric Chemistry and Physics ; From air pollution to climate change, John Willey and Sons, New York.
16 Pope, C.A., M.J. Thun, M.M. Namboodiri, D.W. Dockery, J.S. Evans, F.E. Speizer and C.W. Heath, 1995, Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults, Am. J. Res. & Crit. Care Med., 151, 669-674.   DOI   ScienceOn
17 Dockery, D.W. and C.A. Pope III, 1994, Acute respiratory effects of particulate air pollution, Ann Rev. Pub. Health, 15, 107-132.   DOI   ScienceOn
18 Infante, P. and I.L. Acosta, 1991, Size distribution of trace metals in Ponce, Puerto Rico air pariculate matter, Atmos. Environ., 25, 121-131.   DOI   ScienceOn
19 Fang, G.C., C.N. Chang, Y.S. Wu, F.P.C. Fu, D.G. Yang and C.C. Chu, 1999, Characterization of chemical species in $PM_{2.5}$ and $PM_{10}$ aerosols in suburban and rural sites of central Taiwan, The Sci. Total Environ., 234, 203-212.   DOI   ScienceOn
20 Chow, J.C., J.G. Watson, Z. Ju, D.H. Lowenthal, C.A. Frazier, P.A. Solomon, R.H. Thuillier and K. Magliano, 1996, Descriptive analysis of $PM_{2.5}$ and $PM_{10}$ at regionally repressentative locations during SJVAQS/AUSPEX, Atmos. Environ., 30, 2079-2112.   DOI   ScienceOn
21 이학성, 강병욱, 1996, 디누더 측정기를 이용한 여름철 청주시의 산성오염물질 특성과 분석, 한국대기보전학회지, 12, 441-448.
22 Fraser, M.P., D. Grosjean, E. Grosjean, R.A. Rasmussen and G.R. Cass, 1996, Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors, Environ. Sci. & Tech., 30, 1731-1743.   DOI   ScienceOn
23 이종훈, 김용표, 문길주, 김희강, 정용승, 이종범, 1997, 우리 나라 청정지역에서 측정한 $PM_{2.5}$ 입자의 특성, 한국대기보전학회지, 13, 439-450.
24 Hosiokangas, J., J. Ruuskanen, J. Pekkanen, 1999, Effects of soil dust episodes and mixed fuel sources on source apportionment of $PM_{10}$ particles in Kuopio, Finland. Atmos. Environ., 33, 3821-3829.   DOI   ScienceOn
25 전준민, 김성우, 김윤신, 2001, 여천공단내 실내.외 미세분진중의 화학원소 농도 및 발생원 추정에 관한 연구, 대한환경공학회지, 23, 305-317.
26 Roscoe, B.A., P.K. Hopke, S.L. Dattner and J.M. Jenks, 1982, The use of principal component factor analysis to interpret particulate compositional data sets, JAPCA, 32, 637-642.
27 Funasaka, K., T. Miyazaki, K. Tsuruho, K. Tamura, T. Mizuno and K. Kuroda, 2000, Relationship between indoor and outdoor carbonaceous particulates in roadside households, Environ. Pollution, 110, 127-134.   DOI   ScienceOn
28 Chow, J.C., G.W. John, M.F. Eric, L. Zhiqiang and R.L. Douglas, 1994, Temporal and spatial variation of $PM_{2.5}$ and $PM_{10}$ Aerosol in southern Califormia air quality study, Atmos. Environ., 28, 2061-2080.   DOI   ScienceOn
29 Kim, B.M., S. Teffera and M.D. Zeldin, 2000, Characterization of $PM_{2.5}$ and $PM_{10}$ in the south coast air basin of southern California: Part 1-Spatial variations, J. Air & Waste Manage. Assoc., 50, 2034-2044.   DOI   ScienceOn
30 최민규, 여현구, 임종억, 조기철, 김희강, 2000, 강화에서의 $PM_{2.5}$ 특성, 한국대기환경학회지, 16, 573-583.   과학기술학회마을
31 이민희, 1986, 황사현상이 우리나라에 미치는 영향, 대기보전학회지, 2, 34-44.
32 이태정, 김동술, 1997, 수원지역 입자상 오염물질의 오염원 기여도의 추정, 한국대기보전학회지, 13, 285-296.   과학기술학회마을
33 신은상, 김희강, 1992, 서울시에서의 대기부유먼지에 대한 황사의 영향, 한국대기보전학회지, 8, 52-57.   과학기술학회마을
34 여현구, 조기철, 최민규, 김희강, 2000, 강화도 지역에서 겨울철 $PM_{2.5}$의 화학적 성분 특성, 한국대기보전학회지, 16, 309-316.
35 Dockery, T.G., R.K. Stevens, G.E. Gorden, I. Olmez, A.E. Sheffield and W.J. Conutney, 1998, A composite receptor method applied to Philadelphia aerosol, Environ. Sci. & Technol., 22, 46-52.   DOI   ScienceOn