Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2021.31.3.116

Characterization of crystal phase evolution in cordierite honeycomb for diesel particulate filter by using rietveld refinement and SEM-EDS methods  

Chae, Ki-Woong (Department of Materials Science and Engineering, Hoseo University)
Kim, Kang San (Department of Materials Science and Engineering, Hoseo University)
Kim, Jeong Seog (Department of Materials Science and Engineering, Hoseo University)
Kim, Shin-Han (Research and Development Division, Ceracomb Co., Ltd.)
Abstract
Diesel particulate filter (DPF) is a typical application field of cordierite (Mg2Al4Si5O18) honeycomb. Green body for DPF honeycomb was extruded using slurry paste and sintered at the temperature range of 980~1450℃. Quantitative crystal phase analysis was carried out by using Rietveld refinement method for powder XRD data. In conjunction with the quantitative Rietveld analysis, SEM-EDS analysis was carried for the crystal phases (indialite, cordierite, cristobalite, alumina, spinel, mullite, pro-enstatite). After removing amorphous phase on the sintered surfaces by chemical etching method, the shape and composition of the crystal phases can be clearly identified by SEM-EDS method. By combining the Rietveld refinement method and SEM-EDS analysis, crystal phase evolution process in DPF cordierite ceramics could be clarified. In addition, the coefficient of thermal expansion (CTE) of the DPF honeycombs were measured and compared with the calculated CTEs based on the quantitative crystal phase analysis results.
Keywords
Crystal phase; Cordierite; Honeycomb ceramics; DPF; Quantitative rietveld refinement analysis; CTE;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.W. Brindley and M. Nakahira, "The kaolinite-mullite reaction series: I. A survey of outstanding problems", J. Am. Ceram. Soc. 42 (1959) 311.   DOI
2 J.L. Schlenker, G.V. Gibbs, E.G. Hill, S.S. Crews and R.H. Myers, "Thermal expansion coefficients for indialite, emerald, and beryl", Phys. Chem. Minerals 1 (1977) 243.   DOI
3 T. Watkins, A. Shyam, H.T. Lin and E. Lara-Curzio, "Durability of diesel engine particulate filters", DOE Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting in 2011 (2011).
4 M.L. Stewart, G.D. Maupin, T.R. Gallant, A. Zelenyuk and D.H. Kim, "Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development", PNNL-19476 (Pacific Northwest National Laboratory, Washington, 2010).
5 G. Bruno, A.M. Efremov, B. Clausen, A.M. Balagurov, V.N. Simkin, B.R. Wheaton, J.E. Webb and D.W. Brown, "On the stress-free lattice expansion of porous cordierite", Acta Mater. 58 (2010) 1994.   DOI
6 W. Schreyer and J.F. Schairer, "Compositions and structural states of anhydrous Mg-cordierites: A re-investigation of the central part of the system MgO-Al2O3-SiO2", J. Petrol. 2 (1961) 324.   DOI
7 E.P. de Almeida, I.P. de Brito, H.C. Ferreira, H. de Lucena Lira, L.N. de Lima Santana and G. de Araujo Neves, "Cordierite obtained from compositions containing kaolin waste, talc and magnesium oxide", Ceram. Int. 44 (2018) 1719.   DOI
8 R. Goren, H. Gocmez and C. Ozgur, "Synthesis of cordierite powder from talc, diatomite and alumina", Ceram. Int. 32 (2006) 407.   DOI
9 E.P. Meagher and G.V. Gibbs, "The polymorphism of cordierite II: The crystal structure of indialite", Can. Mineral. 15 (1977) 43.
10 A. Putnis, "The distortion index in anhydrous Mg-Cordierite", Contrib. Mineral Petr. 74 (198) 135.   DOI
11 D.L. Evans, G.R. Fischer, J.E. Geiger and F.W. Martin, "Thermal expansions and chemical modifications of cordierite", J. Am. Ceram. Soc. 63 (1980) 629.   DOI
12 C. Bubeck, "Direction dependent mechanical properties of extruded cordierite honeycombs", J. Eur. Ceram. Soc. 29 (2009) 3113.   DOI
13 M.-A Son, K.-W. Chae, J.S. Kim and S.-H. Kim, "Structural origin of negative thermal expansion of cordierite honeycomb ceramics and crystal phase evolution with sintering temperature", J. Eur. Ceram. Soc. 39 (2019) 2484.   DOI
14 D. Redaoui, F. Sahnoune, M. Heraiz and N. Saheb, "Phase formation and crystallization kinetics in cordierite ceramics prepared from kaolinite and magnesia", Ceram. Int. 44 (2018) 3649.   DOI
15 O.A. Al-Harbi, C. Ozgur and M.M. Khan, "Fabrication and characterization of single phase cordierite honeycomb monolith with porous wall from natural raw materials as catalyst support", Ceram. Int. 41 (2015) 3526.   DOI
16 M. Katayama, J. Nakakuki, J.-H. Pee and Y. Kobayashi, "Effect of particle size of tabular talc powders on crystal orientation and sintering of cordierite ceramics", J. Ceram. Soc. Jpn. 121 (2013) 934.   DOI
17 G.W. Brindley and M. Nakahira, "The kaolinite-mullite reaction series: II. Metakaolin", J. Am. Ceram. Soc. 42 (1959) 315.
18 D. Hugh-Jones, "Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes", Am. Mineral. 82 (1997) 689.   DOI
19 G.A. Merkel and M.J. Murtagh (Corning Inc.), "Fabrication of low thermal expansion high porosity cordierite body", US Patent 5258150 A (1993).
20 K.-W. Chae, M.-A Son, S.-J. Park, J.S. Kim and S.-H. Kim, "Effect of sintering atmosphere on the crystallizations, porosity, and thermal expansion coefficient of cordierite honeycomb ceramics", Ceram. Int. 47 (2021) 19526.   DOI
21 T.R. Boger, W. Miao, Z. Song and J. Wang, "Porous ceramic honeycomb articles and methods for making the same", WO/2012/074833.
22 A. Putnis and D.L. Bish, "The mechanism and kinetics of Al,Si ordering in Mg-cordierite", Am. Mineral. 68 (1983) 60.
23 C. Bubeck, "Direction dependent mechanical properties of extruded cordierite honeycombs", J. Eur. Ceram. Soc. 29 (2009) 3113.   DOI
24 G. Bruno and S.C. Vogel, "Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite", J. Appl. Cryst. 50 (2017) 749. doi.org/10.1107/S160057671700406X.   DOI
25 A.M. Efremov, G. Bruno and B.R. Wheaton, "Texture coefficients for the simulation of cordierite thermal expansion: A comparison of different approaches", J. Eur. Ceram. Soc. 31 (2011) 281.   DOI