• Title/Summary/Keyword: 방전 용량

Search Result 571, Processing Time 0.022 seconds

Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode (망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성)

  • Eom Seung-Wook;Doh Chil-Hoon;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Composite ratio of $LiMn_2O_4$ in cathode was optimized as function of specific surface area. Binder has to be used as possible as little, and it should maintain adhesive property between cathode composite and current collector even though in electrolytes. For this purpose, We used 'Hot Roll Pressing' method, and it was effective. To prevent separation of cathode composite from current collector, PVDF(Polyvinylidenefluoride) has to be mixed more than $1.1\%$ in weight ratio to sum of surface area of lithium manganese oxide and conducting agents. Specific internal resistance was reduced as by increasing electrical conductivity of cathode. And Ratio of 2C rate discharge capacity to 0.2C rate discharge capacity was increased by $17\%$, as increasing electrical conductivity from 0.019 mS/cm to 0.036 mS/cm.

Preparation of Synthesis Gas from Methane in a Capacitive rf Discharge (용량성 rf 플라즈마를 이용한 메탄으로부터의 합성가스 제조)

  • Song, Hyung Keun;Choi, Jae-Wook;Lee, Hwaung;Kim, Seung-Soo;Na, Byung-Ki
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.138-144
    • /
    • 2006
  • Conversion of methane to synthesis gas in a capacitive rf plasma at low pressure was experimentally studied. In this plasma, electrons which had sufficient energy-level collided with the molecules of methane or oxygen-containing gas, which were than activated and converted to synthesis gas. The effect of input power, various oxygen-containing gas and composition of the gas mixture were investigated. The conversion of methane reached up to 100%. In all cases, hydrogen and carbon oxide were produced as primary products, and other compounds was generated. The conversion of methane and the yield of hydrogen and carbon oxides were increased with increasing the input power. Depending on the oxygen-containing gases, the composition of synthesis gas was varied.

  • PDF

Synthesis and Characterization of Tin-Pyrolyzed Carbon Composites as Anode Material for Lithium Ion Secondary Batteries (리튬이온이차전지 음극활물질로써 주석을 첨가한 열분해탄소의 합성과 특성평가)

  • Hwang, Yun-Ju;Park, Sang-Ho;Kim, Ae-Rhan;Jisha, M.R.;Christy, Maria;Suh, Eun-Kyung;Nahm, Kee-Suk
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In present work, tin-carbon mixtures by using carbon from pyrolyzed coffee seeds were synthesized. Synthesis methods includes simple mixing and chemical mixing. X-ray diffraction pattern indicated carbon and tin mixture peaks and scanning electron microscope images showed particles size of $12{\sim}85\;{\mu}m$ and shape. Charge discharge test were carried out. Tin-carbon mixture by chemical mixing indicated higher discharge capacity of 191 mAh/g than commercial carbon black(105 mAh/g) for 15cycles. Tin-carbon mixture by simple mixing indicated similar performance to carbon black.

Effect of the Conducting Agent on Characteristics of Cathode for Zn/Air Batteries (도전재 종류 및 함량에 따른 아연공기전지의 cathode특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.74-78
    • /
    • 2002
  • Zinc Air battery obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820 mAh/g. However, if the pore size in cathode is small then the flow rate of air decreased, and as a result of that discharge voltage of batteries becomes low. We focused on resistance and porosity of cathode. So we studied the effects of conducting agents to zinc air batteries performance, capacity, power density, average discharge voltage, resistance. And we also measured porosity of cathode by the ASTM. So we have got optimum contents of conducting agent.

[ LiCoO2 ] Thin Film Deposited by Bias Sputtering Method I. Electrochemical Characteristics (바이어스 스퍼터링 법으로 제조된 LiCoO2박막 I. 전기화학적 특성)

  • Lee, Y.J.;Park, H.Y.;Cho, W.I.;Cho, B.W.;Kim, K.B.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.261-265
    • /
    • 2003
  • The heat treatment process of thin film microbatteries manufacturing processes has several Problems. This study, without heat treatment, considered the characteristics of $LiCoO_2$ thin films deposited by bais sputtering method inducing the structural change of the thin film. The properties of deposited $LiCoO_2$ thin films such as crystal structure, morphology, and discharge capacity were observed by various analysis methods. Among $LiCoO_2$ thin films deposited by substrate bias $voltage(V_b)$, the one deposited by substrate bias voltage of -50V had the highest initial discharge capacity of about $60{\mu}Ah/cm^2{\mu}m.$ We confirmed that $LiCoO_2$ thin film could be used as cathode material of lithium thin film microbatteries without annealing.

Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process (막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성)

  • Koo, Jin-Sun;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.564-572
    • /
    • 2012
  • A terpolymer of vinylbenzyl chloride-co-ethyl methacrylate-co-styrene (VBC-EMA-St) was prepared for membrane capacitive deionization (MCDI) by radical polymerization and amination reaction of various amination times. Nonfluoro aminated VBC-EMA-St anion-exchange membranes were characterized by Fourier transform infrared (FTIR) spectrometry. Molecular weight, polydispersity and thermal stability were obtained by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The basic properties such as water uptake, ion exchange capacity, electrical resistance and CDI charge-discharge current were measured. The optimal values of ion exchange capacity, water uptake, electrical resistance and molecular weight of synthesized anion-exchange membrane were 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$ and $3.4{\times}10^4$ g/mol, respectively. As compared with conventional membrane, the pattern of cyclic charge-discharge current of synthesized anion-exchange membrane indicated efficient electrosorption and desorption.

Dielectric Characteristics Evaluation of 22.9 kV HTS Power Cable System (22.9 kV 초전도케이블 시스템의 절연특성 평가)

  • Choi, H.O.;Sohn, S.H.;Lim, J.H.;Yang, H.S.;Kim, D.L.;Choi, Y.S.;Lee, B.S.;Jung, W.M.;Ryoo, H.S.;Ma, Y.H.;Ryu, K.W.;Hwang, S.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.293-293
    • /
    • 2008
  • 초전도 케이블은 저손실 대용량 전력수송이 가능한 전력케이블로서 대도시의 전력 공급문제를 해결할 수 있는 환경 친화적 신개념의 전력케이블이다. 한전 전력연구원 고창전력시험센터에서는 2006년에 22.9 kV, 100 m, 50 MVA급 초전도케이블 시스템을 설치하여 초전도케이블 실용화를 위한 신뢰성 시험을 실시하고 있다. 전력케이블의 주요한 신뢰성 요인 중의 하나가 절연특성이며 초전도케이블의 절연특성은 운전온도가 액체질소 온도이므로 절연지에 수분이 고화하여 일반적인 전력케이블보다 좋은 절연특성을 보이는 것으로 알려져 있다. 초전도 케이블은 절연지와 액체질소에 의해 절연이 이루어지며 열적, 기계적, 전기적, 환경적 스트레스에 의해 열화가 발생할 수 있다. 절연층에 이러한 스트레스가 누적되면서 void가 발생하게 되고 전계집중 현상에 의해 절연성능이 저하되며 과다한 열화의 발생시 절연파괴가 일어나게 된다. 온 발표에서는 운전온도 66.4 K에서 1.5 $U_0$ (20 kV) 전압의 30일간 연속 인가 시험과 초전도 케이블의 절연열화 가속시험을 통하여 얻은 부분방전 및 정전용량의 변화 등의 절연특성 평가 결과에 대해 논의한다.

  • PDF

Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery (상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성)

  • Jin, En Mei;Lee, Ga-Eul;Na, Byuong-Ki;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.163-169
    • /
    • 2017
  • In order to investigate the electrochemical properties and the particle size effect of $LiNi_{1-x-y}Co_xAl_yO_2$ (x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1, NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform spherical particles was found to be approximately $5m{\mu}$. NCA#2 consisted of particles with bimodal size distribution of approximately $5m{\mu}$ and $11m{\mu}$. From the results of charge-discharge performance test, a high initial discharge capacity of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively.

Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent (용매 처리 석유계 피치로 코팅된 인조 흑연 음극소재의 전기화학적 특성)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.5-10
    • /
    • 2019
  • In this study, electrochemical characteristics of artificial graphite coated with petroleum pitch using solvent method as anode material of lithium ion battery were investigated. As the solvent, n-hexane, toluene, tetrahydrofuran and quinoline were used. The surface of the prepared anode material was analyzed by SEM and TEM. Also the electrochemical performances of the prepared anode materials were performed by constant current first charge/discharge, cycle, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DEC=1:1 vol%). The coating thickness of the prepared graphite was about 100-500 nm and the graphite coated with THF solvent had a smoother surface than that using other solvents. It was found that pitch-coated graphite (THF) show the low initial irreversible capacity (51 mAh/g), the high discharge capacity (360 mAh/g) and coulombic efficiency (99%).

Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries (계층적 다공구조를 갖는 Fe2O3 나노섬유의 리튬 이차전지 음극소재 적용)

  • Jo, Min Su;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.267-273
    • /
    • 2019
  • Hierarchically porous $Fe_2O_3$ nanofibers with meso- and macro- pores are designed and synthesized by electrospinning and subsequent heat-treatment. The macro pores are generated by selectively decomposition of polystyrene as a dispersed phase in the as-spun fibers containing $Fe(acac)_3$/polyacrylonitrile continuous phases during heat-treatment. Additionally, meso-pores formed by evaporation of infiltrated water vapor during electrospinning process interconnected the macro-pores and results in the formation of hierarchically porous $Fe_2O_3$ nanofibers. The initial discharge capacity and Coulombic efficiency of the hierarchically porous $Fe_2O_3$ nanofibers at a current density of $1.0A\;g^{-1}$ are $1190mA\;h\;g^{-1}$ and 79.2%. Additionally, the discharge capacity of the nanofibers is $792mA\;h\;g^{-1}$ after 1,000 cycles. The high structural stability and morphological benefits of the hierarchically porous $Fe_2O_3$ nanofibers resulted in superior lithium ion storage performance.