• Title/Summary/Keyword: 방위 오차

Search Result 185, Processing Time 0.023 seconds

Zigbee와 초음파를 이용한 자세결정

  • Park, Chan-Sik;Gang, Dong-Yeon;Yun, Hui-Hak;Kim, Seung-Beom;Cha, Eun-Jong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.551-556
    • /
    • 2006
  • 위치 정보를 얻기 위해 GPS를 이용하며 다수의 GPS 안테나를 이용하면 자세까지 구할 수 있다. 그러나 실내에서는 GPS 신호 세기가 너무 약해 동작하지 않는 단점이 있다. 본 논문에서는 GPS 대신 Zigbee와 초음파를 이용하여 실내에서도 위치와 자세를 구하는 기법을 제시하였다. Zigbee 신호와 초음파 신호의 도착 시간차로부터 송신기와 수신기간의 거리를 구할 수 있으며 이로부터 위치를 구할 수 있다. 여기에 추가의 발신기를 장착하면 두 발신기의 위치 차이로 정의되는 기저선 벡터를 구할 수 있으며 이로부터 자세를 구할 수 있다. 본 논문에서는 다수의 발신기를 이용하여 효과적으로 기저선 벡터를 구하는 기법과, 이로부터 자세를 구하는 시스템을 구축하였다. 추가로 오차해석을 통하여 구해진 자세의 정확도를 예측하였다. 실제 실험을 통하여 20cm 간격의 두 발신기를 이용하여 1도 이하의 오차를 갖는 방위각과 앙각을 연속적으로 구할 수 있음을 확인하였다.

  • PDF

Steering Angle Error Compensation Algorithm Appropriate for Rapidly Moving Sources (빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법)

  • 박규태;박도현;이정훈;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • This paper presents a steering angle error compensation (SAEC) algorithm that is appropriate for rapidly moving sources. The Proposed algorithm utilizes a modal covariance matrix from multiple frequency components instead of the multiple snapshots in a narrowband SAEC, and estimates the steering error by maximizing the wideband WVDR output power using a first-order Taylor series approximation of the modal steering vector in terms of the steering error. As such, the steering error can be compensated with short observation times. Several simulations using artificial and sea trial data are used to demonstrate the Performance of the proposed algorithm.

Performance Analysis of Three-Dimensional Radar for Angle and Distance Errors (3차원 레이다 궤적 생성 및 성능 분석)

  • Lim, Hyeongyong;Jang, Yeonsoo;Lee, Taewoo;Hwang, Jaeduck;Yoon, Dongweon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.837-839
    • /
    • 2014
  • In radar systems, information of three-dimensional (3D) trajectory is necessary for tracking targets. The information of 3D trajectory for a 3D radar can be obtained by estimating the azimuth angle, the elevation angle, and the distance. The estimated information of the angles and the distance has errors according to received signals. Since these errors affect performances of 3D radar systems, performance analysis of 3D radar for the angles and the distance errors is required. In this paper, the performance of 3D radar systems is analyzed by root mean square error (RMSE) between true trajectory information and the estimated trajectory information according to the angles and the distance errors.

  • PDF

Development for the Azimuth Measurement Algorithm using Multi Sensor Fusion Method (멀티센서 퓨전 기법을 활용한 방위 측정 알고리즘의 설계)

  • Kim, Tae-Yeong;Kim, Young-Chul;Song, Moon-Kyou;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.865-871
    • /
    • 2011
  • Presently, the location and direction information are certainly needed for the autonomous vehicle of the ship. Among them, the direction information is a essential elements to automatic steering system. And the gyro-compass, the magnetic-compass and the GPS compass are the sensor indicating the direction. The gyro-compasses are mainly used in the large-sized ship of the GMDSS(Global Maritime Distress & Safety System). The precision and the reliability of the gyro-compasses are excellent but big volume and high price are disadvantage. The magnetic-compass has relatively fine precision and inexpensive price. However, the disadvantage is in the influence by the magnetism object including the steel structure of a ship, and etc. In the case of the GPS compass, the true north is indicated according to the change of the location information but in case of the minimum number of satellites or stopping of a ship or exercise in the error range, the exact direction cannot be obtained. In this paper, the performance of the GPS compass was improved by using the least-square curve fitting method for the mutual trade off of the angle sensor. The algorithm which improves the precision of an azimuth by applying the weighted value according to the size of covariance error was proposed with GPS-compass and magnetic compass. The characteristic and the performance of the proposed algorithm were analyzed and verified through experimentation. The applicability of the proposed algorithm was shown through the experimental result.

A Study on Delivery Accuracy Using the Correlation between Errors (오차간의 상관관계를 이용하는 체계명중률 예측에 관한 연구)

  • Kim, Hyun Soo;Kim, Gunin;Kang, Hwan Il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.299-303
    • /
    • 2018
  • Generally, when predicting the accuracy of the anti-air artillery system, the error is classified as fixed bias, variable bias, and random error. Then the standard deviation on the target is expressed as the square root of the squared sum of each error value which comes from the random error and variable bias and in the case of fixed bias, the mean value is shifted as the sum of errors from the fixed bias. At this time, the variables indicating the displacement of the direction of azimuth and elevation direction with regard to the change of the unit value of each error are weighted. These errors are then used to predict the system's delivery accuracy through a normally distributed integral. This paper presents a method of predicting system accuracy by considering the correlation of errors. This approach shows that it helps to predict the delivery accuracy of the system, precisely.

Influences Analysis of SAS Azimuth Resolution on the UUV Trajectory Disturbances (수중 무인정 궤적 교란에 따른 SAS 방위해상도 영향에 대한 분석)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.222-229
    • /
    • 2016
  • Active synthetic aperture sonar on the small UUV is generated several trajectory disturbances under the influences of underwater environments, and causing a large error in the synthetic aperture processing. In this paper, we analyzed the effects of azimuth resolution for the phase mismatch of the synthetic aperture focus processing when the periodic or random trajectory disturbances was generated on the side direction. The simulation results show that ghost targets are generated and azimuth resolution is very deteriorated when disturbance amplitude is greater than $0.3{\lambda}$ and disturbance period is greater than $2L_{sa}$ in the periodic trajectory disturbances environments. And detection performance on the seabed small objects by the synthetic aperture processing is shown that there is a significant effects on the azimuth resolution depending on the types and conditions of the platform trajectory disturbance variations.

A Seamless Positioning System using GPS/INS/Barometer/Compass (GPS/INS/기압계/방위계를 이용한 연속 측위시스템)

  • Kwon, Jay-Hyoun;Grejner-Brzezinska, D.A.;Jwa, Yoon-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.47-53
    • /
    • 2006
  • In this contribution, an integration of seamless navigation system for the pedestrian is introduced. To overcome the GPS outages in various situations, multi-sensor of GPS, INS, electronic barometer and compass are considered in one Extented Kalman filter. Especially, the integrated system is designed for low-cost for the practical applications. Therefore, a MEMS IMU is considered, and the low quality of the heading is compensated by the electronic compass. In addition, only the pseudoranges from GPS measurements are considered for possible real-time application so that the degraded height is also controlled by a barometer. The mathematical models for each sensor with systematic errors such as biases, scale factors are described in detail and the results are presented in terms of a covariance analysis as well as the position and attitude errors compared to the high-grade GPS/INS combined solutions. The real application scenario of GPS outage is also investigated to assess the feasible accuracy with respect to the outage period. The description on the current status of the development and future research directions are also stated.

  • PDF

Location Estimation for Multiple Targets Using Expanded DFS Algorithm (확장된 깊이-우선 탐색 알고리듬을 적용한 다중표적 위치 좌표 추정 기법)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1207-1215
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots in consideration of obstacles. In order to match up targets with measured azimuths, to add to the depth-first search (DFS) algorithms in free-obstacle environment, we suggest the expanded DFS (EDS) algorithm including bypass path search, partial path search, middle level ending, and the supplementation of decision metric. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the error rate of estimated location, mean number of calculating nodes, and mean distance between real coordinates and estimated coordinates of the proposed algorithms.

Performance Analysis of Data Association Applied Frequency Weighting in 3-Passive Linear Array Sonars (주파수 가중치를 적용한 3조의 수동 선배열 소나 센서의 정보 연관 성능 분석)

  • 구본화;윤제한;홍우영;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • This paper deals with data association using 3 sets of passive linear array sonars (PUS) geometrically positioned in a Y-shaped configuration, but fixed in an underwater environment. The data association problem is directly transformed into a 3-D assignment problem, which is known to be NP-hard. For generic passive sensors, it can be sotted using conventional algorithms, while it in PLAS becomes a formidable task due to the presence of bearing ambiguity. In particular, we proposed data association method robust to bearing measurements errors by incorporating frequency information and analyze a region of ghost problem by geometrical relation PUS and target. We analyzed the effectiveness of the proposed method by representative simulation in multi-target.

A Study on Improvement of the Ship's Bearing Information using GPS (GPS를 이용한 선박의 방위정보 향상에 관한 연구)

  • Ko Kwang-Soob;Choi Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.528-533
    • /
    • 2005
  • The purpose of the study is to develop ship's bearing sensor using GPS receiver which can play a role as a ship's secondary compass. In this research, two GPS receivers are used to determine the bearing in real time. Then we investigated the bearing accuracy associated with the error pattern of two GPS receivers. Especially, the results are as follows the investigation on the system design of GPS-Compass, the modeling to compute heading of sailing, the analysis on bearing accuracy with the error pattern, the defining possibility to play a role as a ship's secondary compass.